

LIS009439422B2

(12) United States Patent

Martin et al.

(10) Patent No.: US 9,439,422 B2

(45) **Date of Patent:** *Sep. 13, 2016

(54) USE OF MACROCYCLIC PICOLINAMIDES AS FUNGICIDES

(71) Applicant: **DOW AGROSCIENCES LLC**,

Indianapolis, IN (US)

(72) Inventors: Timothy P. Martin, Noblesville, IN

(US); Kevin G. Meyer, Zionsville, IN (US); Benjamin Nugent, Brownsburg, IN (US); Chenglin Yao, Westfield, IN (US); W. John Owen, Carmel, IN (US); Anne M. Wilson, Indianapolis, IN (US); Ian O'Callaghan, Kinsale (IE); Jeremy Wilmot, Zionsville, IN (US); Johnathan E. DeLorbe, Pearland, TX (US); William Dent, III,

Indianapolis, IN (US)

(73) Assignee: Dow AgroSciences LLC, Indianapolis,

IN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

- (21) Appl. No.: 14/500,628
- (22) Filed: Sep. 29, 2014
- (65) Prior Publication Data

US 2015/0094340 A1 Apr. 2, 2015

Related U.S. Application Data

- (60) Provisional application No. 61/885,380, filed on Oct. 1, 2013, provisional application No. 61/885,391, filed on Oct. 1, 2013.
- (51) **Int. Cl.**

 A01N 43/24
 (2006.01)

 A01N 47/18
 (2006.01)

 C07D 405/12
 (2006.01)

 C07D 321/00
 (2006.01)

 A01N 43/40
 (2006.01)

 A01N 53/00
 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC A61K 31/44; A61K 31/355; A01N 43/40; A01N 43/24; A01N 47/18; A01N 53/00; C07D 405/12; C07D 321/00 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,355,660 B1 3/2002 Ricks 6,521,622 B1 2/2003 Ricks

6,706,740 B2 3/2004 Ricks 6,861,390 B2 3/2005 Meyer 6.927.225 B2 8/2005 Ricks 7,034,035 B2 4/2006 Ricks 7.183.278 B1 2/2007 Imamura 7,250,389 B1 7/2007 Sakanaka 8,785,479 B2 7/2014 Meyer 8,835,462 B2 9/2014 Meyer 8,883,811 B2 11/2014 Owen 2002/0177578 A1 11/2002 Ricks 2003/0018012 A1 1/2003 Ricks 2003/0018052 A1 1/2003 Ricks 2003/0022902 A1 1/2003 Ricks 2004/0034025 A1 2/2004 Ricks 2004/0048864 A1 3/2004 Ricks 2004/0171838 A1 9/2004 Mever 2004/0186296 A1 9/2004 Nyaz 2004/0192924 A1 9/2004 Meyer 2005/0239873 A1 10/2005 Hockenbery 2007/0060579 A1 3/2007 Wachendorff-Neumann 2007/0066629 A1 3/2007 Tormo I Blasco 2009/0306142 A1 12/2009 Carson 2013/0296371 A1 11/2013 Meyer 2014/0187588 A1 7/2014 Lalonde 2014/0275171 A1 9/2014 Meyer 2015/0065529 A1 3/2015 Owen

FOREIGN PATENT DOCUMENTS

EP 1516874 3/2005 WO 01/14339 3/2001 WO 01/14339 A2 3/2001 (Continued)

OTHER PUBLICATIONS

Koyanagi, T., "Bioisosterism in agrochemicals." In Synthesis and chemistry of agrochemicals IV., pp. 15-24. American Chemical Society, 1995.*

(Continued)

Primary Examiner — Samantha Shterengarts

Assistant Examiner — Matt Mauro

(74) Attorney, Agent, or Firm — Charles W. Arnett; Faegre Baker Daniels LLP

(57) ABSTRACT

The invention relates to macrocyclic picolinamides of Formula I and their use as fungicides.

(56)**References Cited** FOREIGN PATENT DOCUMENTS WO 2009040397 9/2008 WO 2012/070015 5/2012 WO 2012/070015 A1 5/2012OTHER PUBLICATIONS

Thomas, S., International Search Report for PCT/US14/58061, Dec. 15, 2014, pp. 1-4, ISA/US.

Thomas, S., International Search Report for PCT/US14/58065, Dec. 22, 2014, pp. 1-4, ISA/US. Thomas, S., Written Opinion for PCT/US14/58061, Dec. 15, 2014,

pp. 1-5, ISA/US.

Thomas, S., Written Opinion for PCT/US14/58065, Dec. 22, 2014, pp. 1-5, ISA/US.

Anonymous, Synergistic Fungicidal Composition of Heterocyclic Aromatic Amides and Trizaoles, IP.com, Electronic Publication, 2004, 11 pages.

Anonymous, Synergistic Fungicidal Composition of Heterocyclic Aromatic Amides and Triazoles, IP.com Journal, IP.com Inc., West Henrietta, NY, US, Dates Jul. 2004, 10 pages.

K. Tani, et al, Journal of Antibiotics, vol. 55, No. 3, Mar. 2002, pp. 315-321.

Z. Hu, et al, Synthesis of Novel Analogues of Antimycin A3, Tetrahedron Letters 49 (2008) pp. 5192-5195.

Y. Usuki, et al, Journal of Antibiotics, vol. 55, No. 6, Jun. 2002, pp. 607-610.

* cited by examiner

USE OF MACROCYCLIC PICOLINAMIDES AS FUNGICIDES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/885,380, and U.S. Provisional Patent Application Ser. No. 61/885,391, each filed Oct. 1, 2013, the disclosure of each of which is expressly 10 incorporated by reference herein.

BACKGROUND & SUMMARY

Fungicides are compounds, of natural or synthetic origin, 15 which act to protect and/or cure plants against damage caused by agriculturally relevant fungi. Generally, no single fungicide is useful in all situations. Consequently, research is ongoing to produce fungicides that may have better performance, are easier to use, and cost less.

The present disclosure relates to macrocyclic picolinamides and their use as fungicides. The compounds of the present disclosure may offer protection against ascomycetes, basidiomycetes, deuteromycetes and oomycetes.

One embodiment of the present disclosure may include $_{25}$ compounds of Formula I:

X is H or $C(O)R_3$; Y is H, $C(O)R_3$, or Q; Q is

 R_1 is H, alkyl, alkenyl, aryl, —Si(R_6)₃, —C(O) R_6 , each substituted with 0, 1 or multiple R_5 ;

R₂ is H, alkyl, aryl, heteroaryl, arylalkyl, each substituted 55 with 0, 1 or multiple R₅;

 R_3 is alkoxy, benzyloxy, each substituted with 0, 1, or multiple R_5 ;

 R_4 is H, $--C(O)R_7$, or $--CH_2OC(O)R_7$;

 $R_{\rm 5}$ is H, alkyl, alkenyl, halo, haloalkyl, alkoxy, aryl, 60 heteroaryl, heterocyclyl, —C(O) $R_{\rm 6};$

 $R_{\rm 6}$ is alkyl, alkenyl, haloalkyl, alkoxy, aryl or heteroaryl; and

 R_7 is alkyl or alkoxy, each substituted with 0, 1, or multiple R_6 ;

with the proviso that R_2 is not unsubstituted phenyl or unsubstituted cyclohexyl.

2

Another embodiment of the present disclosure may include a fungicidal composition for the control or prevention of fungal attack comprising the compounds described above and a phytologically acceptable carrier material.

Yet another embodiment of the present disclosure may include a method for the control or prevention of fungal attack on a plant, the method including the steps of applying a fungicidally effective amount of one or more of the compounds described above to at least one of the fungus, the plant, and an area adjacent to the plant.

It will be understood by the those skilled in the art that the following terms may include generic "R"-groups within their definitions, e.g., "the term alkoxy refers to an —OR substituent". It is also understood that within the definitions for the following terms, these "R" groups are included for illustration purposes and should not be construed as limiting or being limited by substitutions about Formula I.

The term "alkyl" refers to a branched, unbranched, or saturated cyclic carbon chain, including, but not limited to, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, tertiary butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

The term "alkenyl" refers to a branched, unbranched or cyclic carbon chain containing one or more double bonds including, but not limited to, ethenyl, propenyl, butenyl, isopropenyl, isobutenyl, cyclobutenyl, cyclopentenyl, and the like.

The term "alkynyl" refers to a branched or unbranched carbon chain containing one or more triple bonds including, 30 but not limited to, propynyl, butynyl and the like.

The term "aryl" refers to any aromatic, mono- or bicyclic, containing 0 heteroatoms.

The term "unsubstituted phenyl" refers to a phenyl ring in which the 5 available bonding sites are all occupied by a 35 hydrogen atom.

The term "unsubstituted cyclohexyl" refers to a 6-membered, saturated carbocycle in which the 11 available bonding sites are all occupied by a hydrogen atom.

The term "heterocycle" refers to any aromatic or non-40 aromatic ring, mono- or bi-cyclic, containing one or more heteroatoms.

The term "alkoxy" refers to an —OR substituent.

The term "cyano" refers to a —C≡N substituent.

The term "hydroxyl" refers to an —OH substituent.

The term "amino" refers to a —NH₂ substituent.

The term "arylalkoxy" refers to $-O(CH_2)_n$ Ar where n is an integer selected from the list 1, 2, 3, 4, 5, or 6.

The term "haloalkoxy" refers to an —OR—X substituent, wherein X is Cl, F, Br, or I, or any combination thereof.

The term "haloalkyl" refers to an alkyl, which is substituted with Cl, F, I, or Br or any combination thereof.

The term "halogen" or "halo" refers to one or more halogen atoms, defined as F, Cl, Br, and I.

The term "nitro" refers to a —NO₂ substituent.

Throughout the disclosure, reference to the compounds of Formula I is read as also including diastereomers, enantiomers, and mixtures thereof. In another embodiment, Formula (I) is read as also including salts or hydrates thereof. Exemplary salts include, but are not limited to: hydrochloride, hydrobromide, and hydroiodide.

It is also understood by those skilled in the art that additional substitution is allowable, unless otherwise noted, as long as the rules of chemical bonding and strain energy are satisfied and the product still exhibits fungicidal activity.

Another embodiment of the present disclosure is a use of a compound of Formula I, for protection of a plant against attack by a phytopathogenic organism or the treatment of a

plant infested by a phytopathogenic organism, comprising the application of a compound of Formula I, or a composition comprising the compound to soil, a plant, a part of a plant, foliage, and/or roots.

Additionally, another embodiment of the present disclosure is a composition useful for protecting a plant against attack by a phytopathogenic organism and/or treatment of a plant infested by a phytopathogenic organism comprising a compound of Formula I and a phytologically acceptable carrier material.

DETAILED DESCRIPTION

The compounds of the present disclosure may be applied by any of a variety of known techniques, either as the 15 compounds or as formulations comprising the compounds. For example, the compounds may be applied to the roots or foliage of plants for the control of various fungi, without damaging the commercial value of the plants. The materials may be applied in the form of any of the generally used 20 formulation types, for example, as solutions, dusts, wettable powders, flowable concentrate, or emulsifiable concentrates.

Preferably, the compounds of the present disclosure are applied in the form of a formulation, comprising one or more of the compounds of Formula I with a phytologically 25 acceptable carrier. Concentrated formulations may be dispersed in water, or other liquids, for application, or formulations may be dust-like or granular, which may then be applied without further treatment. The formulations can be prepared according to procedures that are conventional in 30 the agricultural chemical art.

The present disclosure contemplates all vehicles by which one or more of the compounds may be formulated for delivery and use as a fungicide. Typically, formulations are applied as aqueous suspensions or emulsions. Such suspensions or emulsions may be produced from water-soluble, water-suspendible, or emulsifiable formulations which are solids, usually known as wettable powders; or liquids, usually known as emulsifiable concentrates, aqueous suspensions, or suspension concentrates. As will be readily 40 appreciated, any material to which these compounds may be added may be used, provided it yields the desired utility without significant interference with the activity of these compounds as antifungal agents.

Wettable powders, which may be compacted to form 45 water-dispersible granules, comprise an intimate mixture of one or more of the compounds of Formula I, an inert carrier and surfactants. The concentration of the compound in the wettable powder may be from about 10 percent to about 90 percent by weight based on the total weight of the wettable 50 powder, more preferably about 25 weight percent to about 75 weight percent. In the preparation of wettable powder formulations, the compounds may be compounded with any finely divided solid, such as prophyllite, talc, chalk, gypsum, Fuller's earth, bentonite, attapulgite, starch, casein, gluten, 55 montmorillonite clays, diatomaceous earths, purified silicates or the like. In such operations, the finely divided carrier and surfactants are typically blended with the compound(s) and milled.

Emulsifiable concentrates of the compounds of Formula I 60 may comprise a convenient concentration, such as from about 1 weight percent to about 50 weight percent of the compound, in a suitable liquid, based on the total weight of the concentrate. The compounds may be dissolved in an inert carrier, which is either a water-miscible solvent or a 65 mixture of water-immiscible organic solvents, and emulsifiers. The concentrates may be diluted with water and oil to

4

form spray mixtures in the form of oil-in-water emulsions. Useful organic solvents include aromatics, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, for example, terpenic solvents, including rosin derivatives, aliphatic ketones, such as cyclohexanone, and complex alcohols, such as 2-ethoxyethanol.

Emulsifiers which may be advantageously employed herein may be readily determined by those skilled in the art and include various nonionic, anionic, cationic and amphoteric emulsifiers, or a blend of two or more emulsifiers. Examples of nonionic emulsifiers useful in preparing the emulsifiable concentrates include the polyalkylene glycol ethers and condensation products of alkyl and aryl phenols, aliphatic alcohols, aliphatic amines or fatty acids with ethylene oxide, propylene oxides such as the ethoxylated alkyl phenols and carboxylic esters solubilized with the polyol or polyoxyalkylene. Cationic emulsifiers include quaternary ammonium compounds and fatty amine salts. Anionic emulsifiers include the oil-soluble salts (e.g., calcium) of alkylaryl sulphonic acids, oil-soluble salts or sulfated polyglycol ethers and appropriate salts of phosphated polyglycol ether.

Representative organic liquids which may be employed in preparing the emulsifiable concentrates of the compounds of the present disclosure are the aromatic liquids such as xylene, propyl benzene fractions; or mixed naphthalene fractions, mineral oils, substituted aromatic organic liquids such as dioctyl phthalate; kerosene; dialkyl amides of various fatty acids, particularly the dimethyl amides of fatty glycols and glycol derivatives such as the n-butyl ether, ethyl ether or methyl ether of diethylene glycol, the methyl ether of triethylene glycol, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soy bean oil, rape seed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cotton seed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; esters of the above vegetable oils; and the like. Mixtures of two or more organic liquids may also be employed in the preparation of the emulsifiable concentrate. Organic liquids include xylene, and propyl benzene fractions, with xylene being most preferred in some cases. Surface-active dispersing agents are typically employed in liquid formulations and in an amount of from 0.1 to 20 percent by weight based on the combined weight of the dispersing agent with one or more of the compounds. The formulations can also contain other compatible additives, for example, plant growth regulators and other biologically active compounds used in agriculture.

Aqueous suspensions comprise suspensions of one or more water-insoluble compounds of Formula I, dispersed in an aqueous vehicle at a concentration in the range from about 1 to about 50 weight percent, based on the total weight of the aqueous suspension. Suspensions are prepared by finely grinding one or more of the compounds, and vigorously mixing the ground material into a vehicle comprised of water and surfactants chosen from the same types discussed above. Other components, such as inorganic salts and synthetic or natural gums, may also be added to increase the density and viscosity of the aqueous vehicle.

The compounds of Formula I can also be applied as granular formulations, which are particularly useful for applications to the soil. Granular formulations generally contain from about 0.5 to about 10 weight percent, based on the total weight of the granular formulation of the compound(s), dispersed in an inert carrier which consists entirely or in large part of coarsely divided inert material such as attapulgite, bentonite, diatomite, clay or a similar inexpensive

substance. Such formulations are usually prepared by dissolving the compounds in a suitable solvent and applying it to a granular carrier which has been preformed to the appropriate particle size, in the range of from about 0.5 to about 3 mm. A suitable solvent is a solvent in which the 5 compound is substantially or completely soluble. Such formulations may also be prepared by making a dough or paste of the carrier and the compound and solvent, and crushing and drying to obtain the desired granular particle.

Dusts containing the compounds of Formula I may be 10 prepared by intimately mixing one or more of the compounds in powdered form with a suitable dusty agricultural carrier, such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1 to about 10 weight percent of the compounds, based on the 15 total weight of the dust.

The formulations may additionally contain adjuvant surfactants to enhance deposition, wetting and penetration of the compounds onto the target crop and organism. These adjuvant surfactants may optionally be employed as a com- 20 ponent of the formulation or as a tank mix. The amount of adjuvant surfactant will typically vary from 0.01 to 1.0 percent by volume, based on a spray-volume of water, preferably 0.05 to 0.5 volume percent. Suitable adjuvant surfactants include, but are not limited to ethoxylated nonyl 25 phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulphosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines, blends of surfactants with mineral or vegetable oils, crop oil concentrate (mineral oil (85%)+emulsifiers (15%)); nonylphenol ethoxylate; benzyl- 30 cocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; C9-C11 alkylpolyglycoside; phosphated alcohol ethoxylate; natural primary alcohol (C12-C16) ethoxylate; di-sec-butylphenol EO-PO block copolymer; 35 polysiloxane-methyl cap; nonylphenol ethoxylate+urea ammonium nitrrate; emulsified methylated seed oil; tridecyl alcohol (synthetic) ethoxylate (8EO); tallow amine ethoxylate (15 EO); PEG(400) dioleate-99. The formulations may also include oil-in-water emulsions such as those disclosed 40 in U.S. patent application Ser. No. 11/495,228, the disclosure of which is expressly incorporated by reference herein.

The formulations may optionally include combinations that contain other pesticidal compounds. Such additional pesticidal compounds may be fungicides, insecticides, herbicides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds. Accordingly, in such embodiments, the 50 other pesticidal compound is employed as a supplemental toxicant for the same or for a different pesticidal use. The compounds of Formula I and the pesticidal compound in the combination can generally be present in a weight ratio of from 1:100 to 100:1.

The compounds of the present disclosure may also be combined with other fungicides to form fungicidal mixtures and synergistic mixtures thereof. The fungicidal compounds of the present disclosure are often applied in conjunction with one or more other fungicides to control a wider variety of undesirable diseases. When used in conjunction with other fungicide(s), the presently claimed compounds may be formulated with the other fungicide(s), tank-mixed with the other fungicide(s) or applied sequentially with the other fungicide(s). Such other fungicides may include 2-(thiocyanatomethylthio)-benzothiazole, 2-phenylphenol, 8-hydroxyquinoline sulfate, ametoctradin, amisulbrom, antimycin,

6

Ampelomyces quisqualis, azaconazole, azoxystrobin, Bacillus subtilis, Bacillus subtilis strain QST713, benalaxyl, benomyl, benthiavalicarb-isopropyl, benzylaminobenzenesulfonate (BABS) salt, bicarbonates, biphenyl, bismerthiazol, bitertanol, bixafen, blasticidin-S, borax, Bordeaux mixture, boscalid, bromuconazole, bupirimate, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, carvone, chlazafenone, chloroneb, chlorothalonil, chlozolinate, Coniothyrium minitans, copper hydroxide, copper octanoate, copper oxychloride, copper sulfate, copper sulfate (tribasic), cuprous oxide, cyazofamid, cyflufenamid, cymoxanil, cyproconazole, cyprodinil, dazomet, diammonium ethylenebis-(dithiocarbamate), debacarb, dichlofluanid, dichlorophen, diclocymet, diclomezine, dichloran, diethofencarb, difenoconazole, difenzoquat ion, diflumetorim, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinobuton, dinocap, diphenylamine, dithianon, dodemorph, dodemorph acetate, dodine, dodine free base, edifenphos, enestrobin, enestroburin, epoxiconazole, ethaboxam, ethoxyquin, etridiazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fenpyrazamine, fentin, fentin acetate, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumorph, fluopicolide, fluopyram, fluoroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, formaldehyde, fosetyl, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, guazatine, guazatine acetates, GY-81, hexachlorobenzene, hexaconazole, hymexazol, imazalil, imazalil sulfate, imibenconazole, iminoctadine, iminoctadine triacetate, iminoctadine tris(albesilate), iodocarb, ipconazole, ipfenpyrazolone, iprobenfos, iprodione, iprovalicarb, isoprothiolane, isopyrazam, isotianil, kasugamycin, kasugamycin hydrochloride hydrate, kresoxim-methyl, laminarin, mancopper, mancozeb, mandipropamid, maneb, mefenoxam, mepanipyrim, mepronil, meptyl-dinocap, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxyl-M, metam, metam-ammonium, metam-potassium, metam-sodium, metconazole, methasulfocarb, methyl iodide, methyl isothiocyanate, metimetominostrobin, metrafenone, mildiomycin, ram, myclobutanil, nabam, nitrothal-isopropyl, nuarimol, octhilinone, ofurace, oleic acid (fatty acids), orysastrobin, oxadixyl, oxine-copper, oxpoconazole fumarate, oxycarboxin, pefurazoate, penconazole, pencycuron, penflufen, pentachlorophenol, pentachlorophenyl laurate, penthiopyrad, phenylmercury acetate, phosphonic acid, phthalide, picoxystrobin, polyoxin B, polyoxins, polyoxorim, potassium bicarbonate, potassium hydroxyquinoline sulfate, probenazole, prochloraz, procymidone, propamocarb, propamocarb hydrochloride, propiconazole, propineb, proquinazid, prothioconazole, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyributicarb, pyrifenox, pyrimethanil, pyriofenone, pyroquilon, quinoclamine, qui-55 noxyfen, quintozene, Reynoutria sachalinensis extract, sedaxane, silthiofam, simeconazole, sodium 2-phenylphenoxide, sodium bicarbonate, sodium pentachlorophenoxide, spiroxamine, sulfur, SYP-Z048, tar oils, tebuconazole, tebufloquin, tecnazene, tetraconazole, thiabendazole, thifluzamide, thiophanate-methyl, thiram, tiadinil, tolclofosmethyl, tolylfluanid, triadimefon, triadimenol, triazoxide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, validamycin, valifenalate, valiphenal, vinclozolin, zineb, ziram, zoxamide, Candida oleophila, Fusarium oxysporum, Gliocladium spp., Phlebiopsis gigantea, Streptomyces griseoviridis, Trichoderma spp., (RS)-N-(3,5-dichlorophenyl)-2-(methoxymethyl)-succinim-

ide, 1,2-dichloropropane, 1,3-dichloro-1,1,3,3-tetrafluoroacetone hydrate, 1-chloro-2,4-dinitronaphthalene, 1-chloro-2-nitropropane, 2-(2-heptadecyl-2-imidazolin-1-yl)ethanol, 2,3-dihydro-5-phenyl-1,4-dithi-ine 1,1,4,4-tetraoxide, 2-methoxyethylmercury acetate, 2-methoxyethylmercury 5 chloride, 2-methoxyethylmercury silicate, 3-(4-chlorophenyl)-5-methylrhodanine, 4-(2-nitroprop-1-enyl)phenyl thiocyanateme, ampropylfos, anilazine, azithiram, barium polysulfide, Bayer 32394, benodanil, benquinox, bentaluron, benzamacril; benzamacril-isobutyl, benzamorf, binapacryl, 10 bis(methylmercury) sulfate, bis(tributyltin) oxide, buthiobate, cadmium calcium copper zinc chromate sulfate, carbamorph, CECA, chlobenthiazone, chloraniformethan, chlorfenazole, chlorquinox, climbazole, copper bis(3-phenylsalicylate), copper zinc chromate, cufraneb, cupric 15 hydrazinium sulfate, cuprobam, cyclafuramid, cypendazole, cyprofuram, decafentin, dichlone, dichlozoline, diclobutrazol, dimethirimol, dinocton, dinosulfon, dinoterbon, dipyrithione, ditalimfos, dodicin, drazoxolon, EBP, ESBP, etaconazole, etem, ethirim, fenaminosulf, fenapanil, fenitropan, 20 fluotrimazole, furcarbanil, furconazole, furconazole-cis, furmecyclox, furophanate, glyodine, griseofulvin, halacrinate, Hercules 3944, hexylthiofos, ICIA0858, isopamphos, isovaledione, mebenil, mecarbinzid, metazoxolon, methfuroxam, methylmercury dicyandiamide, metsulfovax, mil- 25 neb, mucochloric anhydride, myclozolin, N-3,5-dichlorophenyl-succinimide, N-3-nitrophenylitaconimide, natamycin, N-ethylmercurio-4-toluenesulfonanilide, nickel bis(dimethyldithiocarbamate), OCH, phenylmercury dimethyldithiocarbamate, phenylmercury nitrate, phosdiphen, 30 prothiocarb; prothiocarb hydrochloride, pyracarbolid, pyridinitril, pyroxychlor, pyroxyfur, quinacetol; quinacetol sulfate, quinazamid, quinconazole, rabenzazole, salicylanilide, SSF-109, sultropen, tecoram, thiadifluor, thicyofen, thiochlorfenphim, thiophanate, thioquinox, tioxymid, tri- 35 amiphos, triarimol, triazbutil, trichlamide, urbacid, zarilamid, and any combinations thereof.

Additionally, the compounds described herein may be combined with other pesticides, including insecticides, nematocides, miticides, arthropodicides, bactericides or combi- 40 nations thereof that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds to form pesticidal mixtures and synergistic mixtures thereof. The fungicidal compounds of the present 45 disclosure may be applied in conjunction with one or more other pesticides to control a wider variety of undesirable pests. When used in conjunction with other pesticides, the presently claimed compounds may be formulated with the other pesticide(s), tank-mixed with the other pesticide(s) or 50 applied sequentially with the other pesticide(s). Typical insecticides include, but are not limited to: 1,2-dichloropropane, abamectin, acephate, acetamiprid, acethion, acetoprole, acrinathrin, acrylonitrile, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosamidin, allyxycarb, alpha-55 cypermethrin, alpha-ecdysone, alpha-endosulfan, amidithion, aminocarb, amiton, amiton oxalate, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensultap, beta- 60 cyfluthrin, beta-cypermethrin, bifenthrin, bioallethrin, bioethanomethrin, biopermethrin, bistrifluoron, borax, boric acid, bromfenvinfos, bromocyclen, bromo-DDT, bromophos, bromophos-ethyl, bufencarb, buprofezin, butacarb, butathiofos, butocarboxim, butonate, butoxycarboxim, 65 cadusafos, calcium arsenate, calcium polysulfide, camphechlor, carbanolate, carbaryl, carbofuran, carbon disul8

fide, carbon tetrachloride, carbophenothion, carbosulfan, cartap, cartap hydrochloride, chlorantraniliprole, chlorbicyclen, chlordane, chlordecone, chlordimeform, chlordimeform hydrochloride, chlorethoxyfos, chlorfenapyr, chlorfenchloroform. vinphos, chlorfluazuron, chlormephos, chloropicrin, chlorphoxim, chlorprazophos, chlorpyrifos, chlorpyrifos-methyl, chlorthiophos, chromafenozide, cinerin I, cinerin II, cinerins, cismethrin, cloethocarb, closantel, clothianidin, copper acetoarsenite, copper arsenate, copper naphthenate, copper oleate, coumaphos, coumithoate, crotamiton, crotoxyphos, crufomate, cryolite, cyanofenphos, cyanophos, cyanthoate, cyantraniliprole, cyclethrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, cyphenothrin, cyromazine, cythioate, DDT, decarbofuran, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S-methylsulphon, diafenthiuron, dialifos, diatomaceous earth, diazinon, dicapthon, dichlofenthion, dichlorvos, dicresyl, dicrotophos, dicyclanil, dieldrin, diflubenzuron, dilor, dimefluthrin, dimefox, dimetan, dimethoate, dimethrin, dimethylvinphos, dimetilan, dinex, dinex-diclexine, dinoprop, dinosam, dinotefuran, diofenolan, dioxabenzofos, dioxacarb, dioxathion, disulfoton, dithicrofos, d-limonene, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, doramectin, ecdysterone, emamectin, emamectin benzoate, EMPC, empenthrin, endosulfan, endothion, endrin, EPN, epofenonane, eprinomectin, esdepalléthrine, esfenvalerate, etaphos, ethiofencarb, ethion, ethiprole, ethoate-methyl, ethoprophos, ethyl formate, ethyl-DDD, ethylene dibromide, ethylene dichloride, ethylene oxide, etofenprox, etrimfos, EXD, famphur, fenamiphos, fenazaflor, fenchlorphos, fenethacarb, fenfluthrin, fenitrothion, fenobucarb, fenoxacrim, fenoxycarb, fenpirithrin, fenpropathrin, fensulfothion, fenthion, fenthion-ethyl, fenvalerate, flpronil, flonicamid, flubendiamide, flucofuron, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flufenprox, fluvalinate, fonofos, formetanate, formetanate hydrochloride, formothion, formparanate, formparanate hydrochloride, fosmethilan, fospirate, fosthietan, furathiocarb, furethrin, gamma-cyhalothrin, gamma-HCH, halfenprox, halofenozide, HCH, HEOD, heptachlor, heptenophos, heterophos, hexaflumuron, HHDN, hydramethylnon, hydrogen cyanide, hydroprene, hyquincarb, imidacloprid, imiprothrin, indoxacarb, iodomethane, IPSP, isazofos, isobenzan, isocarbophos, isodrin, isofenphos, isofenphos-methyl, isoprocarb, isoprothiolane, isothioate, isoxathion, ivermectin, jasmolin I, jasmolin II, jodfenphos, juvenile hormone I, juvenile hormone II, juvenile hormone III, kelevan, kinoprene, lambda-cyhalothrin, lead arsenate, lepimectin, leptophos, lindane, lirimfos, lufenuron, lythidathion, malathion, malonoben, mazidox, mecarbam, mecarphon, menazon, mephosfolan, mercurous chloride, mesulfenfos, metaflumizone, methacrifos, methamidophos, methidathion, methiocarb, methocrotophos, methomyl, methoprene, methoxychlor, methoxyfenozide, methyl bromide, methyl isothiocyanate, methylchloroform, methylene metoxadiazone, metofluthrin, metolcarb, mevinphos, mexacarbate, milbemectin, milbemycin oxime, mipafox, mirex, molosultap, monocrotophos, monomehypo, monosultap, morphothion, moxidectin, naftalofos, naled, naphthalene, nicotine, nifluridide, nitenpyram, nithiazine, nitrilacarb, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, oxydisulfoton, para-dichlorobenzene, parathion, parathion-methyl, penfluoron, pentachlorophenol, permethrin, phenkapton, phenothrin, phenthoate, phorate, phosalone, phosfolan, phosmet, phosnichlor, phosphamidon, phosphine, phoxim, phoxim-

methyl, pirimetaphos, pirimicarb, pirimiphos-ethyl, pirimiphos-methyl, potassium arsenite, potassium thiocyanate, pp'-DDT, prallethrin, precocene I, precocene II, precocene III, primidophos, profenofos, profluralin, promacyl, promecarb, propaphos, propetamphos, propoxur, prothidathion, 5 prothiofos, prothoate, protrifenbute, pyraclofos, pyrafluprole, pyrazophos, pyresmethrin, pyrethrin I, pyrethrin II, pyrethrins, pyridaben, pyridalyl, pyridaphenthion, pyrifluquinazon, pyrimidifen, pyrimitate, pyriprole, pyriproxyfen, quassia, quinalphos, quinalphos-methyl, quinothion, 10 rafoxanide, resmethrin, rotenone, ryania, sabadilla, schradan, selamectin, silafluofen, silica gel, sodium arsenite, sodium fluoride, sodium hexafluorosilicate, sodium thiocyanate, sophamide, spinetoram, spinosad, spiromesifen, spirotetramat, sulcofuron, sulcofuron-sodium, sulfluramid, sul- 15 fotep, sulfoxaflor, sulfuryl fluoride, sulprofos, taufluvalinate, tazimcarb, TDE, tebufenozide, tebufenpyrad, tebupirimfos, teflubenzuron, tefluthrin, temephos, TEPP, terallethrin, terbufos, tetrachloroethane, tetrachlorvinphos, tetramethrin, tetramethylfluthrin, theta-cypermethrin, thia- 20 cloprid, thiamethoxam, thicrofos, thiocarboxime, thiocyclam, thiocyclam oxalate, thiodicarb, thiofanox, thiometon, thiosultap, thiosultap-disodium, thiosultap-monosodium, thuringiensin, tolfenpyrad, tralomethrin, transfluthrin, transpermethrin, triarathene, triazamate, triazophos, trichlo- 25 rfon, trichlormetaphos-3, trichloronat, trifenofos, triflumuron, trimethacarb, triprene, vamidothion, vaniliprole, XMC, xylylcarb, zeta-cypermethrin, zolaprofos, and any combinations thereof.

Additionally, the compounds described herein may be 30 combined with herbicides that are compatible with the compounds of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds to form pesticidal mixtures and synergistic mixtures thereof. The fungicidal compounds of the 35 present disclosure may be applied in conjunction with one or more herbicides to control a wide variety of undesirable plants. When used in conjunction with herbicides, the presently claimed compounds may be formulated with the herbicide(s), tank-mixed with the herbicide(s) or applied 40 sequentially with the herbicide(s). Typical herbicides include, but are not limited to: 4-CPA; 4-CPB; 4-CPP; 2,4-D; 3,4-DA; 2,4-DB; 3,4-DB; 2,4-DEB; 2,4-DEP; 3,4-DP; 2,3,6-TBA; 2,4,5-T; 2,4,5-TB; acetochlor, acifluorfen, aclonifen, acrolein, alachlor, allidochlor, alloxydim, allyl 45 alcohol, alorac, ametridione, ametryn, amibuzin, amicarbazone, amidosulfuron, amino evelopyrachlor, aminopyralid, amiprofos-methyl, amitrole, ammonium sulfamate, anilofos, anisuron, asulam, atraton, atrazine, azafenidin, azimsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, 50 bencarbazone, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzadox, benzfendizone, benzipram, benzobicyclon, benzofenap, benzofluor, benzoylprop, benzthiazuron, bicyclopyrone, bifenox, bilanafos, bispyribac, borax, bromacil, bromobonil, bromobutide, bromofenoxim, 55 bromoxynil, brompyrazon, butachlor, butafenacil, butamifos, butenachlor, buthidazole, buthiuron, butralin, butroxydim, buturon, butylate, cacodylic acid, cafenstrole, calcium chlorate, calcium cyanamide, cambendichlor, carbasulam, carbetamide, carboxazole chlorprocarb, carfentrazone, 60 CDEA, CEPC, chlomethoxyfen, chloramben, chloranocryl, chlorazifop, chlorazine, chlorbromuron, chlorbufam, chloreturon, chlorfenac, chlorfenprop, chlorflurazole, chlorflurenol, chloridazon, chlorimuron, chlornitrofen, chloropon, chlorotoluron, chloroxuron, chloroxynil, chlorpropham, 65 chlorsulfuron, chlorthal, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, cliodinate, clo10

dinafop, clofop, clomazone, clomeprop, cloprop, cloproxydim, clopyralid, cloransulam, CMA, copper sulfate, CPMF, CPPC, credazine, cresol, cumyluron, cyanatryn, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop, cyperquat, cyprazine, cyprazole, cypromid, daimuron, dalapon, dazomet, delachlor, desmedipham, desmetryn, diallate, dicamba, dichlobenil, dichloralurea, dichlormate, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethamquat, diethatyl, difenopenten, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimexano, dimidazon, dinitramine, dinofenate, dinoprop, dinosam, dinoseb, dinoterb, diphenamid, dipropetryn, diquat, disul, dithiopyr, diuron, DMPA, DNOC, DSMA, EBEP, eglinazine, endothal, epronaz, EPTC, erbon, esprocarb, ethalfluralin, ethametsulfuron, ethidimuron, ethiolate, ethofumesate, ethoxyfen, ethoxysulfuron, etinofen, etnipromid, etobenzanid, EXD, fenasulam, fenoprop, fenoxaprop, fenoxaprop-P, fenoxasulfone, fenteracol, fenthiaprop, fentrazamide, fenuron, ferrous sulfate, flamprop, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenican, flufenpyr, flumetsulam, flumezin, flumiclorac, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluorofluoromidine, fluoronitrofen, glycofen, fluothiuron, flupoxam, flupropacil, flupropanate, flupyrsulfuron, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glufosinate-P, glyphosate, halosafen, halosulfuron, haloxydine, haloxyfop, haloxyfop-P, hexachloroacetone, hexaflurate, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, indaziflam, iodobonil, iodomethane, iodosulfuron, ioxynil, ipazine, ipfencarbazone, iprymidam, isocarbamid, isocil, isomethiozin, isonoruron, isopolinate, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, karbutilate, ketospiradox, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPAthioethyl, MCPB, mecoprop, mecoprop-P, medinoterb, mefenacet, mefluidide, mesoprazine, mesosulfuron, mesotrione, metam, metamifop, metamitron, metazachlor, metazosulfuron, metflurazon, methabenzthiazuron, methalpropalin, methazole, methiobencarb, methiozolin, methiuron, methometon, methoprotryne, methyl bromide, methyl isothiocyanate, methyldymron, metobenzuron, metobromuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monisouron, monochloroacetic acid, monolinuron, monuron, morfamquat, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nipyraclofen, nitralin, nitrofen, nitrofluorfen, norflurazon, noruron, OCH, orbencarb, ortho-dichlorobenzene, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxapyrazon, oxasulfuron, oxaziclomefone, oxyfluorfen, parafluoron, paraquat, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, perfluidone, pethoxamid, phenisopham, phenmedipham, phenmedipham-ethyl, phenobenzuron, phenylmercury acetate, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, potassium cyanate, pretilachlor, primisulfuron, procyazine, prodiamine, profluazol, profluralin, profoxydim, proglinazine, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propyrisulfuron, propyzamide, prosulfalin, prosulfocarb, prosulfuron, proxan, prynachlor, pydanon, pyraclonil, pyraflufen, pyrasulfotole, pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyriclor, pyridafol, pyridate, pyriftalid, pyrimi-

nobac, pyrimisulfan, pyrithiobac, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quinonamid, quizalofop-P, rhodethanil, saflufenacil, S-metolachlor, sebuthylazine, secbumeton, sethoxydim, siduron, simazine, simeton, simetryn, SMA, 5 sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfallate, sulfentrazone, sulfometuron, sulfosulfuron, sulfuric acid, sulglycapin, swep, TCA, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbuchlor, terbumeton, terbuthylazine, terbutryn, tetrafluo- 10 ron, thenylchlor, thiazafluoron, thiazopyr, thidiazimin, thidiazuron, thiencarbazone-methyl, thifensulfuron, thiobencarb, tiocarbazil, tioclorim, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tricamba, triclopyr, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron, trifop, trifopsime, trihydroxytriazine, trimeturon, tripropindan, tritac, tritosulfuron, vernolate, and xylachlor.

Another embodiment of the present disclosure is a method for the control or prevention of fungal attack. This method 20 comprises applying to the soil, plant, roots, foliage, or locus of the fungus, or to a locus in which the infestation is to be prevented (for example applying to cereal or grape plants), a fungicidally effective amount of one or more of the compounds of Formula I. The compounds are suitable for 25 treatment of various plants at fungicidal levels, while exhibiting low phytotoxicity. The compounds may be useful both in a protectant and/or an eradicant fashion.

The compounds have been found to have significant fungicidal effect particularly for agricultural use. Many of 30 the compounds are particularly effective for use with agricultural crops and horticultural plants.

It will be understood by those in the art that the efficacy of the compound for the foregoing fungi establishes the general utility of the compounds as fungicides.

The compounds have broad ranges of activity against fungal pathogens. Exemplary pathogens may include, but are not limited to, causing agent of wheat leaf blotch (Mycosphaerella graminicola; inperfect stage: Septoria tritici), wheat brown rust (Puccinia triticina), wheat stripe 40 rust (Puccinia striiformis), scab of apple (Venturia inaequalis), powdery mildew of grapevine (Uncinula necator), barley scald (Rhynchosporium secalis), blast of rice (Magnaporthe grisea), rust of soybean (Phakopsora pachyrhizi), glume blotch of wheat (Leptosphaeria nodorum), powdery 45 mildew of wheat (Blumeria graminis f. sp. tritici), powdery mildew of barley (Blumeria graminis f. sp. hordei), powdery mildew of cucurbits (Erysiphe cichoracearum), anthracnose of cucurbits (Glomerella lagenarium), leaf spot of beet (Cercospora beticola), early blight of tomato (Alternaria 50 solani), and spot blotch of barley (Cochliobolus sativus). The exact amount of the active material to be applied is dependent not only on the specific active material being applied, but also on the particular action desired, the fungal species to be controlled, and the stage of growth thereof, as 55 well as the part of the plant or other product to be contacted with the compound. Thus, all the compounds, and formulations containing the same, may not be equally effective at similar concentrations or against the same fungal species.

The compounds are effective in use with plants in a 60 disease-inhibiting and phytologically acceptable amount. The term "disease-inhibiting and phytologically acceptable amount" refers to an amount of a compound that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. This amount will generally be from about 0.1 to about 1000 ppm (parts per million), with 1 to 500 ppm being preferred. The exact concentration

12

of compound required varies with the fungal disease to be controlled, the type of formulation employed, the method of application, the particular plant species, climate conditions, and the like. A suitable application rate is typically in the range from about 0.10 to about 4 pounds/acre (about 0.01 to 0.45 grams per square meter, g/m²).

Any range or desired value given herein may be extended or altered without losing the effects sought, as is apparent to the skilled person for an understanding of the teachings herein

The compounds of Formula I may be made using well-known chemical procedures. Intermediates not specifically mentioned in this disclosure are either commercially available, may be made by routes disclosed in the chemical literature, or may be readily synthesized from commercial starting materials utilizing standard procedures.

General Schemes

The following schemes illustrate approaches to generating picolinamide compounds of Formula (I). It may be understood by those skilled in the art that each R_2 may be differentially substituted. The following descriptions and examples are provided for illustrative purposes and should not be construed as limiting in terms of substituents or substitution patterns.

Compounds of Formula 1.4, where R₂ is as originally defined, can be prepared according to the methods outlined in Scheme 1, steps a-b. Compounds of Formula 1.2 can be obtained by reaction of an acid chloride prepared from carboxylic acids of Formula 1.1, where R₂ is as originally defined, using a chlorinating agent, such as oxalyl chloride or thionyl chloride, in a solvent such as dichloroethane (DCE) in the presence of a catalytic amount of N,Ndimethylformamide (DMF), with the amide anion of a chiral oxazolidinone prepared by treating compound 1.0 with n-butyllithium (n-BuLi) in an anhydrous solvent such as tetrahydrofuran (THF) at -78° C., as shown in a. Compounds of Formula 1.4, can be prepared by treating the boron enolate of compounds of Formula 1.2, formed using dibutyl(((trifluoromethyl)-sulfonyl)oxy)borane amine base such as triethylamine, with a benzyl- or triisopropylsilyl protected lactate-derived aldehyde of Formula 1.3, prepared as described by Enders et al. Organic Syntheses, 2004, 10, 66; 2002, 78, 177, in a solvent such as dichloromethane (CH₂Cl₂, DCM) at -78° C. to -10° C., as shown in b.

Scheme 1

O

NH

HO

1.1

$$R_2$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_9
 $R_$

-continued OH OH CH₃
$$\stackrel{\circ}{\underset{Bn}{\bigvee}}$$
 $\stackrel{\circ}{\underset{Bn}{\bigvee}}$ $\stackrel{\circ}{\underset{Bn}{\bigvee}}$ $\stackrel{\circ}{\underset{Bn}{\bigvee}}$ $\stackrel{\circ}{\underset{Bn}{\bigvee}}$ $\stackrel{\circ}{\underset{Bn}{\bigvee}}$ $\stackrel{\circ}{\underset{Bn}{\bigvee}}$

Compounds of Formula 2.6, where R₁ is alkyl, R₂ is as originally defined, and X is tert-butoxycarbonyl (Boc) can be prepared according to the methods outlined in Scheme 2, 15 steps a-e. Compounds of Formula 2.1, where R₁ possesses an allylic functionality and R₂ is as originally defined, can be prepared by treating compounds of Formula 2.0, where R₂ is as originally defined, with an allyl carbonate, such as tert-butyl(2-methylallyl)carbonate, in the presence of a palladium (0) catalyst with or without the addition of a phosphine ligand, such as tris(dibenzylideneacetone)-dipalladium(0) (Pd₂(dba)₃) and 1,1'-bis(diphenylphosphino) ferrocene (dppf), in an aprotic solvent such as THF, at 25 elevated temperatures, such as 45 to 60° C., as depicted in a. Primary alcohols of Formula 2.2, where R₁ possesses an allylic functionality and R2 is as originally defined, can be obtained from compounds of Formula 2.1, where R₁ and R₂ are as defined above, by treatment with a reducing agent

such as lithium borohydride (LiBH4) in a mixed solvent system consisting of THF and water (H₂O), as shown in b. Compounds of Formula 2.4, where R₁ possesses an allylic functionality and R2 is as originally defined and X is Boc or Cbz, can be prepared from compounds of Formula 2.2, where R₁ and R₂ are as defined above, by treatment with a protected aziridine of Formula 2.3, wherein X is Boc or Cbz, such as (S)-1-tert-butyl 2-methyl aziridine-1,2-dicarboxylate, in the presence of a Lewis acid such as boron trifluoride diethyl etherate (BF₃-Et₂O), in an aprotic solvent such as DCM, as shown in c. Compounds of Formulas 2.5 or 2.6, wherein the allylic functionality in R₁ has been reduced to an alkyl functionality, R₂ is as originally defined, and X is Boc, can be prepared from compounds of Formula 2.4, where R₁, R₂, and X are as defined above, by treatment with hydrogen in the presence of a catalyst, such as palladium on carbon (Pd/C), in a solvent such as ethyl acetate (EtOAc), as shown in d. Treating compounds of Formula 2.4, where R₁, R₂, and X are as defined above and the carboxylic acid is protected as the benzyl (Bn) ester, as described in d affords compounds of Formula 2.6 directly, whereas treatment of compounds of Formula 2.4 wherein the carboxylic acid is protected as the methyl (Me) ester, as described in d affords compounds of Formula 2.5, which require an additional hydrolysis step, as shown in e. In step e compounds of Formula 2.5 are converted to compounds of Formula 2.6, using a hydroxide base, such as lithium hydroxide (LiOH), in an aqueous THF solvent mixture.

Scheme 2

OH

OH

$$R_2$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_7
 R_8
 R_9
 R_9

Compounds of Formula 3.5, where R₁ is triisopropylsilyl (TIPS), R₂ is as originally defined, and X is as originally 15 defined, but not hydrogen, can be prepared according to the methods outlined in Scheme 3, steps a-f. Compounds of Formula 3.1, where R₂ is as originally defined, can be obtained from compounds of Formula 3.0, where R2 is as originally defined, using an aqueous acid solution such as 20 hydrochloric acid (HCl) in a solvent such as ethanol (EtOH) at an elevated temperature, such as 80° C., as shown in a. Compounds of Formula 3.2, where R_1 is TIPS and R_2 is as originally defined, can be obtained from compounds of Formula 3.1, where R_2 is as defined above, by exposure to 25 triisopropylsilyl trifluoro-methanesulfonate and an amine base, such as 4-N,N-dimethylamino pyridine (DMAP), in a solvent such as DCM, as shown in b. Compounds of Formula 3.3, where R₁ is TIPS and R₂ is as originally defined, can be prepared from compounds of Formula 3.2, where R₁ and R₂ are as defined above, by treatment with a reducing agent such as diisobutylaluminum hydride (DIBAl-H) in a solvent such as DCM, as shown in c. Compounds of Formula 3.4, where R₁ is TIPS and R₂ is as originally defined and X is Boc or Cbz, can be prepared from 35 compounds of Formula 3.3, where R₁ and R₂ are as defined above, by treatment with a protected aziridine of Formula 2.3, wherein X is Boc or Cbz, such as (S)-1-tert-butyl 2-methyl aziridine-1,2-dicarboxylate, in the presence of a Lewis acid such as BF₃-Et₂O, in an aprotic solvent such as DCM, as shown in d. Compounds of Formula 3.5, where R₁, R2, and X are as defined above, can be prepared from compounds of Formula 3.4, where R_1 , R_2 , and X are as defined above and the carboxylic acid is protected as either the methyl (Me) or benzyl (Bn) ester, by treating with a hydroxide base, such as LiOH, in an aqueous THF solvent mixture, as shown in e. Additionally, compounds of Formula 3.5, where R₁ and R₂ are as defined above and X is Boc, can be prepared from compounds of Formula 3.4, where R₁ and ${\bf R_2}$ are as defined above, ${\bf X}$ is Boc, and the carboxylic acid 50 is protected as the benzyl (Bn) ester by treatment with hydrogen in the presence of a catalyst such as Pd/C, in a solvent such as EtOAc, as shown in f.

-continued НО,,, 3.1 3.2 CH_3 , OR₁ HO CH_3 (Bn) 3.3 2.3 OR_1 (Bn) H₃0 ĒН $H\bar{N}$ e or f ŌН R_2 3.5

Compounds of Formula 4.1, where R₁ is TIPS, alkyl, or an allylic functionality and R₂ is as originally defined and X is Boc or Cbz, can be prepared according to the methods outlined in Scheme 4. Compounds of Formula 4.1, can be obtained from compounds of Formula 4.0, where R₁ is TIPS, alkyl, or an allylic functionality and R₂ is as originally defined and X is Boc or Cbz, by the addition of a solution of compounds of Formula 4.0 in a halogenated solvent such as DCM or an aromatic solvent such as toluene to a mixture of a base, such as DMAP, and a mixed anhydride, such as 2-methyl-6-nitrobenzoic anhydride (MNBA), in either a halogenated solvent such as DCM or an aromatic solvent such as toluene over a period of 4-12 hours, as shown in a.

$$X$$
 $N_{M_{1}}$
 OH
 OR_{1}
 CH_{3}
 A
 R_{2}

4.0
$$CH_3$$
 R_2
 R_2

Compounds of formulas 5.1 and 5.2 can be prepared through the methods shown in Scheme 5, steps a-b. Com- 25 pounds of Formula 5.1, where R₁ is an allylic or alkyl functionality, R₂ is as originally defined, and X and Y are hydrogen, can be obtained from compounds of Formula 5.0, where R_1 is an allylic or alkyl functionality, R_2 is as originally defined, X is Boc, and Y is hydrogen, by treating with an acid, such as a 4.0 M hydrogen chloride (HCl) solution in dioxane, in a solvent such as DCM, as shown in a. The resulting hydrochloride salt may be neutralized prior to use to give the free amine or neutralized in situ in step b. Compounds of Formula 5.2, where R₁ is an allylic or alkyl functionality and R2 is as originally defined, can be prepared from compounds of Formula 5.1 by treatment with 3-hydroxy-4-methoxypicolinic acid in the presence of a base, such as 4-methylmorpholine, and a peptide coupling 40 reagent, such as O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) or benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), in an aprotic solvent such as DCM, as shown in b.

-continued
$$CH_3$$
 H_3C-O
 OH
 HN
 O
 R_2

Compounds of Formulas 6.1-6.8 can be prepared as described in Scheme 6, steps a-h. Compounds of Formula 6.1, where R_1 is a trialkyl silyl group like TIPS, R_2 is as originally defined, and X and Y are Boc, can be prepared from compounds of Formula 6.0, where R_1 is a trialkyl silyl group like TIPS, R2 is as originally defined, X is Boc, and Y is H, by treatment with a dicarbonate, such as di-tert-butyl dicarbonate (Boc₂O) in the presence of an amine base, such as DMAP, in a polar aprotic solvent such as acetonitrile (CH₃CN), as shown in a. Secondary alcohols of Formula 6.2, where R₁ is H, R₂ is as originally defined, and X and Y are Boc, can be prepared by treating compounds of Formula 6.1, where R₁, R₂, X, and Y are as defined above, with a fluoride source, such as tetrabutylammonium fluoride (TBAF), in an aprotic solvent such as THF, as shown in b. Compounds of Formula 6.3, where R₁ possesses an allylic functionality, R2 is as originally defined, and X and Y are Boc, can be prepared from compounds of Formula 6.2, where R_1 , R_2 , X, and Y are as defined above, by treating with an allyl carbonante, such as tert-butyl(cyclopent-2-en-1-yl) carbonate, in the presence of a palladium catalyst with or without the addition of a phosphine ligand, such as tetrakis (triphenylphosphine)palladium(0) (Pd(PPh₃)₄), or (Pd₂ (dba)₃), and dppf, in an aprotic solvent such as toluene or THF, at elevated temperatures, such as 60-95° C., as shown in c. Compounds of Formula 6.4, where R₁ is alkyl, R₂ is as originally defined, and X and Y are Boc, can be prepared from compounds of Formula 6.3, where R_1 , R_2 , X, and Y are as defined above, by treating with hydrogen in the presences of a catalyst such as Pd/C or PtO_2 (platinum (IV) oxide), in a solvent such as EtOAc, as shown in f. Compounds of Formula 6.5, where R_1 is acyl, R_2 is as originally defined, 45 and X and Y are Boc, can be prepared from compounds of Formula 6.2, where R₁, R₂, X, and Y are as defined above, by treating with a carbonyl chloride such as isobutyryl chloride in the presence of an amine base such as DMAP, in a solvent such as DCM, as shown in d. Compounds of 50 Formula 6.6, where R₁ is aryl, R₂ is as originally defined, and X and Y are Boc, can be prepared from compounds of Formula 6.2, where R₁, R₂, X, and Y are as defined above, by treating with a triarylbismuth reagent, such as tritoluoylbismuth diacetate, in the presence of a copper catalyst, such 55 as diacetoxycopper, and an amine base, such as N,N-dicyclohexyl-methylamine, in an aprotic solvent such as toluene at an elevated temperature of about 50° C., as shown in e. Compounds of Formula 6.7, where R_1 and R_2 are as originally defined, and X and Y are H, can be prepared from a 60 variety of precursors, including, but not limited to, compounds of Formulas 6.3, 6.4, 6.5, and 6.6, wherein R₁, R₂, X, and Y have been previously defined above, by treating with an acid, such as a 4.0 M HCl solution in dioxane, in a solvent such as DCM, as shown in g. The resulting hydro-65 chloride salt may be neutralized prior to use to give the free amine or neutralized in situ in step h. Compounds of Formula 6.8, where R₁ and R₂ are as originally defined, can

be prepared from compounds of Formula 6.7, where R_1, R_2, X , and Y are H, by treating with 3-hydroxy-4-methoxypicolinic acid in the presence of a base, such as N-ethyl-N-isopropylpropan-2-amine, and a peptide coupling reagent, such as HATU or PyBOP, in an aprotic solvent such as 5 DCM, as shown in h.

defined, and X is Boc (7.0), X and Y are Boc (7.1), and X is CBz (7.2), respectively. Treating compounds of Formulas 7.0 and 7.1 with an acid, such as a 4.0 M HCl solution in dioxane, in a solvent such as DCM affords the hydrochloride salt of compounds of Formula 7.3, which may be neutralized

Compounds of Formulas 7.3 and 7.4 can be prepared through the methods shown in Scheme 7, steps a-d. Compounds of Formula 7.3, where R_1 and R_2 are as originally defined and X and Y are H, can be prepared from a variety or precursors, including, but not limited to, compounds of Formulas 7.0, 7.1, and 7.2, where R_1 and R_2 are as originally

in situ in step d or neutralized prior to use to give the free amine, as shown in a. Additionally, compounds of Formula 7.3, where R_1 and R_2 are as originally defined, can be prepared from compounds of Formulas 7.0 and 7.1, where R_1 , R_2 , are as originally defined and X and Y are Boc or Cbz, by treatment with trimethylsilyl trifluoromethanesulfonate

in the presence of a base, such as 2,6-lutidine, in an aprotic solvent such as DCM, followed by treatment with a protic solvent such as MeOH, as shown in b. Alternatively, compounds of Formula 7.3, where R_1 and R_2 are as originally defined and X and Y are H, can be prepared from compounds of Formula 7.2, where R_1 and R_2 are as originally defined and X is CBz, by treatment with hydrogen in the presence of a catalyst, such as Pd/C, in a solvent such as EtOAc, as shown in c. Compounds of Formula 7.4, where R_1 and R_2 are as originally defined, can be prepared from compounds of Formula 7.3, where R_1 and R_2 are as defined above, by treatment with 3-hydroxy-4-methoxypicolinic acid in the presence of a base, such as 4-methylmorpholine, and a peptide coupling reagent, such as HATU or PyBOP, in an aprotic solvent such as DCM, as shown in step d.

$$\begin{array}{c} \underline{\text{Scheme 8}} \\ 5 \\ \text{H}_{3}\text{C} \longrightarrow O \\ 0 \\ \hline \\ N \\ \end{array} \begin{array}{c} \underline{\text{OH}} \\ \text{O} \\ \\ \underline{\text{OH}} \\ \text{O} \\ \\ R_{2} \\ \end{array} \begin{array}{c} \underline{\text{CH}_{3}} \\ \\ \underline{\text{A}} \\ \\ R_{2} \\ \end{array} \begin{array}{c} \underline{\text{CH}_{3}} \\ \\ \underline{\text{A}} \\ \\ \underline{\text{$$

Compounds of Formula 8.1, where R_1 , R_2 and R_4 are as originally defined, can be prepared by the method shown in Scheme 8. Compounds of Formula 8.1 can be prepared from compounds of Formula 8.0, where R_1 and R_2 are as originally defined, by treatment with the appropriate alkyl halide with or without a reagent such as sodium iodide (NaI) and an alkali carbonate base such as sodium carbonate (Na₂CO₃) or potassium carbonate (K₂CO₃) in a solvent such as acetone or by treatment with an acyl halide in the presence of an amine base, such as pyridine, triethylamine, DMAP, or 65 mixtures thereof in an aprotic solvent such as DCM, as shown in a.

-continued
$$\begin{array}{c} \text{-continued} \\ \text{H}_3\text{C} - \text{O} \\ \text{N} \\ \text{O} \\ \text{N} \\ \text{O} \\ \text{R}_2 \\ \\ \text{S}.1 \\ \end{array}$$

20

25

30

The following examples are presented to illustrate the various aspects of the compounds of the present disclosure and should not be construed as limitations to the claims.

EXAMPLES

Example 1

Step 1: Preparation of (R)-4-benzyl-3-(3-(p-tolyl) propanoyl)-oxazolidin-2-one

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\$$

To a solution of 3-(p-tolyl)propanoic acid (8.0 grams (g), 48.7 millimoles (mmol)) in dichloroethane (DCE, 100 milliliters (mL)) was added oxalyl chloride (30.9 g, 20.6 mL, 40 243 mmol) followed by 1 drop of DMF, and the resulting gold colored mixture was stirred at room temperature. Within 90 minutes (min) all of the solids had dissolved and gas evolution had subsided. The solution was stirred for an additional 2 hours (h) and then the solvent and excess oxalyl 45 chloride were evaporated on the rotary evaporator. The resulting yellow oil was dissolved in anhydrous THF (25 mL) and the solvent was evaporated (repeated 2×). The residual yellow oil was dissolved in anhydrous THF (5 mL) and used immediately in the next step.

To a solution of (R)-4-benzyloxazolidin-2-one (7.5 g, 42.3 mmol) in anhydrous THF (140 mL) was added n-BuLi (17.8 mL of 2.5 M in hexanes, 44.4 mmol) dropwise at -78° C. over a 20 min period. The solution was clear to light yellow during most of the addition and then gradually turns 55 orange upon completion. The resulting orange solution was stirred at -78° C. for 45 min and was then treated dropwise with the propanoyl chloride prepared above at -75 to -78° C. The resulting light brown solution was stirred at -78° C. for 2 h, slowly warmed to room temperature, and stirred for 60 16 h at room temperature. The homogeneous brown solution was neutralized with saturated aqueous ammonium chloride (NH₄Cl, 100 mL), and the majority of the THF was removed on the rotary evaporator. The aqueous residue was extracted with CH₂Cl₂ (3×100 mL), and the combined organic extracts 65 were washed with brine (100 mL), dried over sodium sulfate (Na₂SO₄), filtered, and concentrated to a tan solid. The solid

was recrystallized from 25% ethyl acetate (EtOAc) in hexanes (150 mL), and the resulting crystals were collected by vacuum filtration, washed with ice cold 20% EtOAc in hexanes, and dried under vacuum to give (R)-4-benzyl-3-(3-(p-tolyl)propanoyl)oxazolidin-2-one (10.57 g, 77%) as pale yellow needles: mp 124-126° C.; $^1\mathrm{H}$ NMR (400 MHz, CDCl $_3$) δ 7.29 (m, 3H), 7.17 (m, 4H), 7.11 (m, 2H), 4.65 (m, 1H), 4.16 (m, 2H), 3.26 (m, 3H), 2.99 (m, 2H), 2.75 (m, 1H), 2.32 (s, 3H); ESIMS m/z 346 ([M+Na]^+).

Example 1

Step 2: Preparation of (R)-4-benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-hydroxy-2-(4-methylbenzyl)pentanoyl)oxazolidin-2-one

To a solution of (R)-4-benzyl-3-(3-(p-tolyl)propanoyl) oxazolidin-2-one (2.5 g, 7.73 mmol) in CH₂Cl₂ (30 mL) was added dibutyl(((trifluoromethyl)sulfonyl)oxy)borane (8.5 mL of 1M in CH₂Cl₂, 8.5 mmol) dropwise at 0° C., and the resulting brown solution was stirred for 10 min. Triethylamine (TEA, 1.1 g, 10.82 mmol) was added dropwise, and the resulting light yellow solution was stirred for 1 h, and then cooled to -78° C. A solution of (S)-2-(benzyloxy) propanal (1.65 g, 10.05 mmol), prepared according to the method described in Enders, D., von Berg, S., Jandeleit, B. Organic Synthesis 2002, 78, 177, in CH₂Cl₂ (3 mL) was added dropwise and the reaction was stirred at -78° C. for 1 h. The dry ice/acetone bath was replaced with an ice/ acetone bath and the reaction was stirred at -10° C. for 1 h. The reaction was quenched with a 2:1 solution of MeOH/ pH=7 phosphate buffer (24 mL total) followed by a 2:1 solution of MeOH/30% hydrogen peroxide (H₂O₂; 6 mL total, 2 mL peroxide, ~20 mmol), and then stirred at 0° C. for 1 h. The phases were separated and the aqueous phase was extracted with additional CH₂Cl₂ (2×50 mL). The combined organic phases were washed with aqueous sodium

bicarbonate (NaHCO₃), washed with brine, dried over magnesium sulfate (MgSO₄), filtered, and concentrated to give 4.6 g of a light yellow oil. Purification by flash chromatography (silica gel (SiO₂), 0→40% EtOAc/hexanes) afforded (R)-4-benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-hydroxy-2-(4-methylbenzyl)pentanoyl)-oxazolidin-2-one (3.18 g, 84%) as a colorless, sticky glass: ¹H NMR (400 MHz, CDCl₃) δ 7.26 (m, 10H), 7.04 (d, J=7.8 Hz, 2H), 6.92 (dd, J=7.6, 1.6 Hz, 2H), 4.74 (m, 1H), 4.63 (d, J=11.6 Hz, 1H), 4.31 (d, J=11.6 Hz, 1H), 4.23 (ddt, J=8.1, 6.6, 3.3 Hz, 1H), 3.97 (td, J=6.8, 4.9 Hz, 1H), 3.68 (dd, J=9.0, 3.1 Hz, 1H), 3.55 (m, 1H), 3.38 (t, J=8.4 Hz, 1H), 3.24 (dd, J=13.4, 5.4 Hz, 1H), 2.95 (dd, J=13.4, 10.4 Hz, 1H), 2.80 (dd, J=13.6, 3.4 Hz, 1H), 2.59 (d, J=4.9 Hz, 1H), 2.27 (s, 3H), 1.81 (dd, J=13.6, 15 10.3 Hz, 1H), 1.34 (d, J=6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.08, 152.94, 138.43, 135.87, 135.57, 135.18, 129.54, 129.09, 128.91, 128.79, 128.27, 127.48, 127.33, 127.03, 76.78, 75.35, 70.27, 65.30, 54.66, 46.15, 37.20, 34.73, 21.00, 15.88; ESIMS m/z 511 ([M+Na]+).

Example 2

Step 1: Preparation of (R)-4-benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentanoyl)oxazolidin-2-one

To a 250 mL round bottom flask were added (R)-4benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-hydroxy-2-(4-methylbenzyl)pentanoyl)oxazolidin-2-one (11.2 g, 23 mmol) and anhydrous THF (145 mL). The solution was sparged with N₂ for 5 min and then tris(dibenzylideneacetone)-dipalladium (0) (Pd₂(dba)₃; 2.10 g, 2.3 mmol) and 1,1'-bis(diphenylphosphino)ferrocene (dppf; 2.55 g, 4.59 mmol) were added, and the resulting dark solution was sparged with N₂ for an additional 5 minutes. The reaction mixture was warmed to 55° C. under N₂ and treated with a solution of tert-butyl (2-methylallyl)carbonate (7.9 g, 45.9 mmol) in THF (5 mL). The dark mixture was stirred at 55° C. for 1 h and then cooled to room temperature. The reaction mixture was filtered through paper, rinsing with CH2Cl2, and the filtrate was evaporated to give a dark oil. The oil was partially purified by flash chromatography (SiO₂, $0\rightarrow30\%$ acetone/ hexanes) to give (R)-4-benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentanoyl) oxazolidin-2-one (9.36 g) as a yellow oil that is ²⁰ contaminated with dibenzylideneacetone (dba): ¹H NMR (400 MHz, CDCl₃) δ 7.22 (m, 10H), 7.02 (d, J=7.8 Hz, 2H), 6.87 (m, 2H), 5.06 (m, 1H), 4.91 (s, 1H), 4.77 (ddd, J=11.7, 9.3, 4.7 Hz, 1H), 4.64 (d, J=11.9 Hz, 1H), 4.31 (d, J=11.9 Hz, 1H), 4.16 (s, 2H), 3.96 (m, 1H), 3.74 (dd, J=9.2, 7.1 Hz, 1H), ²⁵ 3.62 (p, J=6.1 Hz, 1H), 3.41 (m, 2H), 2.85 (m, 2H), 2.70 (dd, J=13.7, 3.5 Hz, 1H), 2.26 (s, 3H), 2.17 (s, 3H), 1.49 (dd, J=13.7, 10.6 Hz, 1H), 1.34 (d, J=6.1 Hz, 3H); ESIMS m/z 565 ([M+Na]⁺).

Example 2

Step 2: Preparation of (2S,3R,4S)-4-(benzyloxy)-3-(2-methylallyl)-oxy)-2-(4-methylbenzyl)pentan-1-ol

50

To a solution of (R)-4-benzyl-3-((2R,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentanoyl) oxazolidin-2-one (9.36 g, 17.3 mmol) in aqueous THF (4:1 THF/H₂O; 86 mL) was added lithium borohydride (34.6 mL) of 2.0 M in THF, 69.1 mmol) dropwise at -5° C., and the 5 resulting vellow solution was vigorously stirred. After 1 h the vellow color (dba) had dissipated and the reaction was allowed to slowly warm to room temperature. The reaction was stirred for an additional 5 h and then poured into ice cold saturated aqueous NH₄Cl (250 mL). The phases were separated and the aqueous was extracted with CH₂Cl₂ (3×100 mL). The combined organics phases were dried over Na₂SO₄, filtered, and concentrated to a light yellow oil (10.11 g), which was purified by both reverse phase (RP; 15 C18, $0\rightarrow 100\%$ CH₃CN/H₂O) and normal phase (NP: SiO₂, $0\rightarrow30\%$ EtOAc/CH₂Cl₂) to give (2S,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentan-1-ol (4.04 g, 48% from Ex. 2, Step 1) as a colorless liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 5H), 7.06 (m, 4H), 4.98 ₂₀ (m, 1H), 4.87 (m, 1H), 4.64 (d, J=11.6 Hz, 1H), 4.44 (d, J=11.6 Hz, 1H), 4.08 (d, J=11.6 Hz, 1H), 3.97 (d, J=12.1 Hz, 1H), 3.78 (p, J=6.2 Hz, 1H), 3.56 (m, 3H), 2.88 (dd, J=13.8, 4.7 Hz, 1H), 2.53 (dd, J=13.8, 10.1 Hz, 1H), 2.30 (s, 3H), 2.18 (ddd, J=14.4, 7.7, 4.3 Hz, 1H), 2.01 (dd, J=6.2, 4.9 Hz, 25 1H), 1.76 (s, 3H), 1.33 (d, J=6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.41, 138.50, 137.87, 135.28, 129.00, 128.37, 127.75, 127.57, 111.86, 83.08, 75.92, 75.73, 70.79, 62.83, 44.60, 32.63, 21.05, 20.99, 19.84, 16.33; ESIMS m/z 391 ([M+Na]+).

Example 2

Step 3: Preparation of (S)-methyl 3-((2S,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentyl)oxy)-2-((tert-butoxycarbonyl)amino)propanoate

$$H_3C$$
 CH_2
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

-continued
$$H_3C$$
 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

To a solution of (2S,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentan-1-ol (0.51) mmol) and (diethyloxonio)trifluoroborate (BF₃(OEt)₂), 0.02 g, 0.14 mmol) in CH₂Cl₂ (9 mL) was added a solution of (S)-1-tert-butyl 2-methylaziridine-1,2-dicarboxylate (0.40 g, 1.99 mmol) in CH₂Cl₂ (4.0 mL) slowly (syringe pump: 1.0 mL/h) at room temperature. After 3 h, the reaction mixture was treated with 2 µL of BF₃(OEt)₂, while the aziridine addition was continued, and at the 4 and 5 h time points HPLC-MS indicated 74 and 84% conversion to desired product. An additional 2 μL of BF₃(OEt)₂ were added and the reaction mixture was stirred for 1 h and then treated with a final 2 µL dose of BF₃(OEt)₂ and 0.1 equivalents of the aziridine. After 1 h of stirring, the reaction mixture was adsorbed to Celite® (3.3 g) and purified by flash chromatography (SiO₂, $0\rightarrow 20\%$ acetone/hexanes) to give (S)-methyl 3-((2S,3R,4S)-4-(benzyloxy)-3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentyl)oxy)-2-((tert-butoxycarbonyl)amino)propanoate (0.46 g, 58%) as à colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 5H), 7.05 (d, J=7.8 Hz, 2H), 6.98 (d, J=8.0 Hz, 2H), 5.30 (d, J=9.0 Hz, 1H), 5.00 (m, 1H), 4.87 (m, 1H), 4.61 (d, J=11.7 Hz, 1H), 4.44 (d, J=11.7 Hz, 1H), 4.39 (m, 1H), 4.09 (d, J=12.0 Hz, 1H), 3.88 (d, J=12.0 Hz, 1H), 3.72 (s, 3H), 3.68 (m, 2H), 3.49 (dt, J=8.8, 4.3 Hz, 2H), 3.23 (m, 2H), 2.92 (dd, J=13.7, 3.9 Hz, 1H), 2.38 (dd, J=13.7, 10.7 Hz, 1H), 2.31 (s, 3H), 2.21 (dq, J=6,9, 3.7 Hz, 1H), 1.78 (s, 3H), 1.43 (s, 9H), 1.27 (d, J=6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.14, 155.49, 142.79, 138.73, 137.86, 135.23, 128.94, 128.33, 127.68, 127.47, 111.54, 81.57, 79.98, 77.22, 76.34, 75.57, 70.78, 70.66, 70.52, 53.94, 52.35, 42.09, 32.26, 28.31, 21.00, 16.20, 15.514, SIMS, π/σ, 50.4 (M), No. 11.15 19.89, 16.01; ESIMŚ m/z 594 ([M+Na+H]+).

Example 2

Step 4: Preparation of (S)-methyl 2-((tert-butoxy-carbonyl)amino)-3-(((2S,3R,4S)-4-hydroxy-3-isobutoxy-2-(4-methylbenzyl)pentyl)oxy)propanoate

-continued
$$H_3C$$
 CH_3 $CH_$

To a solution of (S)-methyl 3-((2S,3R,4S)-4-(benzyloxy)- 15 3-((2-methylallyl)oxy)-2-(4-methylbenzyl)pentyl)oxy)-2-((tert-butoxycarbonyl)amino)propanoate (3.0 g, 5.27 mmol) in ethyl alcohol (EtOH; 21 mL) was added Pd/C (10%, ~200 mg), and the mixture was sparged with N2. The reaction flask was evacuated and backfilled with \bar{N}_2 three times, 20 evacuated and backfilled with H2 three times, and then stirred under 1 atmosphere (atm) of H₂ for 16 h. The reaction mixture was treated with additional catalyst (0.2 g) and resubjected to the hydrogenation/hydrogenolysis conditions as described above for an additional 5 h. The reaction flask was evacuated and backfilled with N_2 (4x) and then the reaction mixture was sparged with N2 for 10 min. The mixture was filtered through Celite®, rinsing with EtOH, and the filtrate was passed through a 2 µm syringe filter, and then concentrated to a colorless oil. The oil was purified by flash chromatography (SiO₂, 0→30% acetone/hexanes) to give (S)-methyl 2-((tert-butoxycarbonyl)amino)-3-(2S,3R, 4S)-4-hydroxy-3-isobutoxy-2-(4-methylbenzyl)pentyl)oxy)propanoate (2.099 g, 83%) as a colorless oil: ¹H NMR ₃₅ (400 MHz, CDCl₃) δ 7.05 (m, 4H), 5.36 (d, J=8.7 Hz, 1H), 4.43 (dd, J=5.4, 3.3 Hz, 1H), 3.90 (m, 1H), 3.76 (s, 3H), 3.72 (m, 1H), 3.56 (dd, J=9.3, 3.0 Hz, 1H), 3.24 (m, 5H), 2.94 (dd, J=13.8, 4.4 Hz, 1H), 2.47 (dd, J=13.7, 10.8 Hz, 1H), 2.32 (s, 3H), 2.12 (dq, J=6.7, 3.4 Hz, 1H), 1.84 (dq, J=13.2, 6.6 Hz, 1H), 1.45 (s, 9H), 1.26 (d, J=6.3 Hz, 4H), 0.93 (dd, J=6.7, 2.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.06, 155.40, 137.83, 135.36, 129.04, 128.87, 83.26, 80.07, 78.59, 71.11, 70.00, 68.47, 53.94, 52.47, 42.56, 34.67, 33.20, 31.60, 29.09, 28.32, 22.66, 21.01, 19.57, 19.52, 19.49; 45 ESIMS m/z 505 ([M+Na]⁺).

Example 2

Step 5: Preparation of (S)-2-((tert-butoxycarbonyl) amino)-3-(((2S,3R,4S)-4-hydroxy-3-isobutoxy-2-(4-methylbenzyl)pentyl)oxy)propanoic acid

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

To a solution of (S)-methyl 2-((tert-butoxycarbonyl) amino)-3-(((2S,3R,4S)-4-hydroxy-3-isobutoxy-2-(4-methylbenzyl)pentyl)oxy)propanoate (2.06 g, 4.28 mmol) in aqueous THF (16 THF:5H2O; 21 mL total volume) was added LiOH—H₂O (0.54 g, 12.83 mmol) and the reaction was stirred for 4 h at room temperature. The reaction was diluted with H₂O (50 mL) and the majority of the THF was removed on the rotovap. The aqueous residue was acidified with 2 N HCl and extracted with CH₂Cl₂ (6×50 mL) until the aqueous phase was nearly clear. The combined organic extracts were washed with brine (2×50 mL), dried over Na₂SO₄, filtered, and concentrated to a colorless oil (1.96 g). The oil was purified by RP flash chromatography (C18; 0→85% CH₃CN/H₂O) to give (S)-2-((tert-butoxycarbonyl) amino)-3-(((2S,3R,4S)-4-hydroxy-3-isobutoxy-2-(4methyl-benzyl)pentyl)oxy)-propanoic acid (1.71 g, 85%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.05 (m, 4H), 6.57 (s, 2H), 5.47 (d, J=8.1 Hz, 1H), 4.44 (m, 1H), 3.92 (m, 1H), 3.77 (m, 1H), 3.58 (m, 1H), 3.41 (d, J=7.2 Hz, 1H), 3.24 (m, 4H), 2.91 (dd, J=13.7, 4.0 Hz, 1H), 2.46 (dd, J=13.7, 10.8 Hz, 1H), 2.31 (s, 3H), 2.10 (dd, J=6.8, 3.3 Hz, 1H), 1.81 (dp, J=13.2, 6.6 Hz, 1H), 1.44 (s, 9H), 1.25 (d, J=6.2 Hz, 3H), 0.91 (dd, J=6.7, 2.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) & 171.72, 153.71, 135.81, 133.44, 127.15, 127.02, 81.61, 78.33, 76.81, 69.13, 68.31, 67.08, 51.93, 40.98, 31.48, 27.16, 26.42, 19.12, 17.65, 17.58, 17.38; ESIMS m/z 491 ([M+Na]+).

Example 3

Step 1: Preparation of (3R,4R,5S)-4-hydroxy-5-methyl-3-phenethyldihydro-furan-2(3H)-one and (R)-4-benzyloxazolidin-2-one

40

45

-continued

To a solution of (R)-4-benzyl-3-((2R,3R,4S)-3-hydroxy-15 2-phenethyl-4-((triisopropylsilyl)oxy)pentanoyl)-oxazolidin-2-one (2.52 g, 4.55 mmol) in EtOH (18 mL) was added 1 N HCl (2 mL, 2 mmol) and the mixture heated to 80° C. for a 3 h. The solution was concentrated in vacuo, and the residue was dissolved in CH₂Cl₂, loaded onto a pre-packed 20 Celite® cartridge, and purified by flash chromatography $(SiO_2, 0 \rightarrow 100\% EtOAc/hexanes)$ gave (3R,4R,5S)-4-hydroxy-5-methyl-3-phenethyldihydrofuran-2(3H)-one (840 mg, 3.81 mmol, 84% yield) and (R)-4-benzyloxazolidin-2one (710 mg, 4.01 mmol, 88% yield). The title product was 25 obtained as a colorless, amorphous solid: ¹H NMR (600 MHz, CDCl₃) δ 7.33-7.28 (m, 2H), 7.25-7.19 (m, 3H), 4.20-4.13 (m, 1H), 3.80 (dd, J=8.9, 7.3 Hz, 1H), 2.96-2.88 (m, 1H), 2.86-2.79 (m, 1H), 2.59-2.52 (m, 1H), 2.28-2.17 (m, 2H), 1.97-1.88 (m, 1H), 1.43 (d, J=6.3 Hz, 3H); 13 C 30 NMR (151 MHz, CDCl₃) δ 175.91, 140.94, 128.64, 128.51, 126.34, 79.89, 79.36, 47.98, 32.81, 30.25, 18.19; ESIMS m/z 221 ([M+H]+).

Example 3

Step 2: Preparation of (3R,4R,5S)-5-methyl-3-phenethyl-4-((triisopropylsilyl)oxy)dihydrofuran-2(3H)-one

$$CH_3$$
 CH_3
 CH_3

To a solution of (3R,4R,5S)-4-hydroxy-5-methyl-3-phenethyldihydrofuran-2(3H)-one (800 mg, 3.63 mmol) in CH $_2$ Cl $_2$ (20 mL) were added 2,6-dimethylpyridine (592 μ l, 5.08 mmol) and triisopropylsilyl trifluoromethanesulfonate 60 (1171 μ L, 4.36 mmol) at 0° C., and the mixture was warmed to room temperature while stirring overnight. The reaction mixture was poured onto 50 mL saturated sodium bicarbonate solution and mixed thoroughly. The phases were separated, and the aqueous extracted with CH $_2$ Cl $_2$ (2×25 mL). 65 The combined CH $_2$ Cl $_2$ extracts were dried and concentrated to a colorless oil which was purified by flash chromatogra-

phy (SiO₂, 0→50% EtOAc/hexanes) to give (3R,4R,5S)-5-methyl-3-phenethyl-4-((triisopropylsilyl)oxy)dihydro-furan-2(3H)-one (809 mg, 53%): 1 H NMR (400 MHz, CDCl₃) δ 7.33-7.25 (m, 2H), 7.25-7.17 (m, 3H), 3.98 (dd, J=5.9, 4.8 Hz, 1H), 4.34-4.24 (m, 1H), 2.99-2.88 (m, 1H), 2.88-2.76 (m, 1H), 2.61-2.51 (m, 1H), 2.04-1.94 (m, 2H), 1.43 (d, J=6.5 Hz, 3H), 1.09-0.99 (m, 21H); 13 C NMR (101 MHz, CDCl₃) δ 176.64, 140.98, 128.57, 128.51, 126.16, 82.10, 79.45, 49.17, 32.96, 31.14, 19.10, 18.00, 17.71; ESIMS m/z 378 ([M+H] $^{+}$).

Example 3

Step 3: Preparation of (2S,3R,4S)-2-phenethyl-3-((triisopropylsilyl)-oxy)pentane-1,4-diol

To an oven-dried flask were added (3R,4R,5S)-5-methyl-3-phenethyl-4-((triisopropyl-silyl)oxy)dihydrofuran-2(3H)one (670 mg, 1.601 mmol) and CH₂Cl₂ (8 mL)) and the mixture was cooled to -78° C. and treated with DIBAL-H (1.0 M in CH₂Cl₂, 4.00 mL, 4.00 mmol) dropwise over 10 min. The dry ice/acetone bath was removed and the mixture allowed to warm to room temperature while stirring overnight. The reaction was cooled to 0° C. and quenched by 55 addition of saturated potassium sodium tartrate solution (50 mL). The mixture was diluted with CH₂Cl₂ (25 mL) and stirred until two clean-splitting phases were formed. The phases were separated, and the aqueous extracted further with CH₂Cl₂. The combined organic extracts were dried and concentrated to a colorless oil which was purified by flash chromatography (SiO₂, 030% EtOAc/hexanes) to give (2S, 3R,4S)-2-phenethyl-3-((triisopropylsilyl)oxy)pentane-1,4diol (422 mg, 69%): ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 7.21-7.14 (m, 3H), 4.02-3.92 (m, 2H), 3.77 (dd, J=4.3, 3.1 Hz, 1H), 3.72-3.61 (m, 1H), 3.18 (s, 1H), 2.92-2.76 (m, 2H), 2.62-2.51 (m, 1H), 2.10-1.96 (m, 1H),

40

1.80-1.62 (m, 2H), 1.27 (d, J=6.7 Hz, 3H), 1.07-0.93 (m, 21H); 13 C NMR (101 MHz, CDCl₃) δ 141.94, 128.48, 128.36, 125.86, 78.18, 71.24, 59.48, 45.39, 34.24, 29.69, 18.64, 18.14, 18.10, 12.54; ESIMS m/z 403 ([M+Na]⁺).

Example 4

Step 1: Preparation of tert-butyl ((3S,7S,8R,9S)-8-isobutoxy-9-methyl-7-(4-methylbenzyl)-2-oxo-1,5-dioxonan-3-yl)carbamate (F170)

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

To a magnetically stirred solution of DMAP (3.22 g, 26.3 mmol) and MNBA (2.07 g, 6.02 mmol) in anhydrous toluene (750 mL) was added a solution of (S)-2-((tert-butoxycarbonyl)amino)-3-(2S,3R,4S)-4-hydroxy-3-isobutoxy-2-(4methylbenzyl)pentyl)oxy)-propanoic acid (1.76 g, 3.76 mmol) in anhydrous toluene (60 mL) dropwise over 5.5 h (syringe pump), and the resulting turbid mixture was stirred for 16 h. The reaction mixture was filtered through paper and the filtrate was concentrated to a pale yellow solid which was purified by flash chromatography (SiO₂, 0→30% acetone/hexanes) to give tert-butyl ((3S,7S,8R,9S)-8-isobutoxy-9-methyl-7-(4-methylbenzyl)-2-oxo-1,5-dioxonan-3yl)carbamate (1.48 g, 87%) as a white foam: ¹H NMR (400 55 MHz, CDCl₃) 8 7.09 (d, J=8.2 Hz, 2H), 7.06 (d, J=8.2 Hz, 2H), 5.14 (d, J=8.2 Hz, 1H), 4.95 (dq, J=9.2, 6.4 Hz, 1H), 4.59 (q, J=7.3 Hz, 1H), 3.87 (dd, J=11.5, 7.3 Hz, 1H), 3.44 (t, J=7.4 Hz, 2H), 3.32 (tdd, J=16.8, 10.6, 5.2 Hz, 3H), 3.10 (dd, J=10.4, 6.6 Hz, 2H), 2.31 (s, 3H), 2.24 (t, J=12.7 Hz, 1H), 1.88 (dq, J=13.2, 6.6 Hz, 2H), 1.47 (d, J=6.4 Hz, 3H), 1.41 (s, 9H), 0.95 (d, J=6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.24, 154.95, 136.81, 135.52, 129.10, 129.01, 84.66, 80.02, 79.21, 75.57, 72.86, 72.48, 52.97, 47.40, ₆₅ 34.56, 29.17, 28.27, 21.01, 19.48, 18.80; ESIMS m/z 473 $([M+Na]^{+}).$

Example 4

Step 2: Preparation of tert-butyl N-tert-butoxycar-bonyl-N-[(3S,7S,8R,9S)-9-methyl-7-(1-naphthylm-ethyl)-2-oxo-8-triisopropylsilyloxy-1,5-dioxonan-3-yl]carbamate

$$\begin{array}{c} H_3C \\ CH_3 \\ CH_4 \\ CH_5 \\ CH$$

To a solution of tert-butyl ((3S,7S,8R,9S)-9-methyl-7-(naphthalen-1-ylmethyl)-2-oxo-8-((triisopropylsilyl)oxy)-1, 5-dioxonan-3-yl)carbamate (2.8 g, 4.78 mmol) and DMAP (0.292 g, 2.39 mmol) in CH₃CN (23.9 mL) was added di-tert-butyl dicarbonate (4.17 g, 19.1 mmol) at room temperature and the reaction was stirred for 16 h at room temperature. The crude reaction mixture was adsorbed to Celite® and purified via flash chromatography (SiO₂, 0→20% EtOAc/hexanes) to give tert-butyl N-tert-butoxycarbonyl-N-[(3S,7S,8R,9S)-9-methyl-7-(1-naphthylmethyl)-2-oxo-8-triisopropylsilyloxy-1,5-dioxonan-3-yl]carbamate (2.85 g, 87%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 8.04-7.96 (m, 1H), 7.87-7.80 (m, 1H), 7.71 (dd, J=8.2, 1.3 Hz, 1H), 7.52-7.36 (m, 4H), 5.24 (app q, J=3.1 Hz, 1H), 5.06 (app t, J=7.9 Hz, 1H), 4.11 (dd, J=5.9, 2.9 Hz, 1H), 4.08 (d, J=7.9 Hz, 2H), 3.75-3.63 (m, 2H), 3.37 (m, 2H), 2.32-2.22 (m, 1H), 1.52 (d, J=7.0 Hz, 3H), 1.47 (s, 18H), 1.04 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 169.53, 152.75, 136.39, 134.08, 131.92, 128.95, 127.65, 126.82, 125.70, 125.45, 125.37, 123.68, 82.84, 78.92, 76.93, 73.31, 71.12, 58.06, 48.83, 30.74, 27.91, 19.92, 18.17, 18.14, 12.73; ESIMS m/z 709 ([M+Na]+).

Example 5

Steps 1a and 1b: Preparation of 3-hydroxy-N-((3S, 7S,8R,9S)-8-isobutoxy-9-methyl-7-(4-methylben-zyl)-2-oxo-1,5-dioxonan-3-yl)-4-methoxypicolinamide (F48)

$$CH_3$$
 CH_3
 CH_3

Step 1a

To a solution of tert-butyl ((3S,7S,8R,9S)-8-isobutoxy-9- 50 methyl-7-(4-methylbenzyl)-2-oxo-1,5-dioxonan-3-yl)carbamate (0.03 g, 0.07 mmol) in CH₂Cl₂ (0.7 mL) was added a 4 M solution of HCl in dioxane (0.33 mL, 1.34 mmol), and the resulting colorless solution was stirred at room temperature for 1.5 h. The solvent was evaporated under a positive 55 stream of N₂ and the residue was dissolved in CH₂Cl₂, washed with saturated aqueous NaHCO₃, dried by passing through a phase separator cartridge, and concentrated to give (3S,7S,8R,9S)-3-amino-8-isobutoxy-9-methyl-7-(4-methylbenzyl)-1,5-dioxonan-2-one (0.021 g, 90%) as a white solid: 60 mp 81-84° C.; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (t, J=2.7 Hz, 4H), 4.91 (dq, J=9.2, 6.4 Hz, 1H), 3.84 (dd, J=11.6, 7.5 Hz, 1H), 3.74 (m, 2H), 3.64 (m, 1H), 3.47 (dd, J=8.3, 6.4 Hz, 1H), 3.41 (dd, J=10.7, 6.1 Hz, 1H), 3.31 (m, 2H), 3.07 (m, 3H), 2.31 (s, 3H), 1.87 (m, 2H), 1.59 (m, 1H), 1.47 (d, J=6.4 65 Hz, 3H), 0.95 (dd, J=6.7, 1.6 Hz, 6H); ESIMS m/z 351 $([M+H]^{+}).$

Step 1b

To a mixture of 3-hydroxy-4-methoxypicolinic acid (0.198 g, 1.17 mmol), HATU (0.47 g, 1.25 mmol), and N-methylmorpholine (0.47 g, 4.7 mmol) in CH₂Cl₂ (9 mL) was added (3S,7S,8R,9S)-3-amino-8-isobutoxy-9-methyl-7-(4-methylbenzyl)-1,5-dioxonan-2-one (272 mg, mmol), and the tan mixture was stirred at room temperature for 7 h. The resulting homogeneous solution was adsorbed to Celite® and purified by flash chromatography (SiO₂, 0→30% acetone/hexanes) to give 3-hydroxy-N-((3S,7S,8R, 9S)-8-isobutoxy-9-methyl-7-(4-methylbenzyl)-2-oxo-1,5dioxonan-3-yl)-4-methoxypicolinamide (0.30 g, 77%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 1H), 8.54 (d, J=8.3 Hz, 1H), 7.97 (d, J=5.2 Hz, 1H), 7.09 (d, J=2.1 Hz, 4H), 6.85 (d, J=5.2 Hz, 1H), 5.01 (m, 2H), 4.02 (dd, J=11.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.46 (m, 4H), 3.34 (dd, J=8.3, 6.5 Hz, 1H), 3.13 (m, 2H), 2.31 (s, 4H), 1.93 (m, 2H), 1.50 (d, J=6.4 Hz, 3H), 0.96 (d, J=6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.15, 168.90, 155.31, 148.71, 140.62, 136.76, 135.58, 130.20, 129.15, 129.05, 109.56, $84.61,\ 79.28,\ 75.92,\ 72.53,\ 72.16,\ 56.08,\ 51.53,\ 47.47,$ 34.60, 29.20, 21.03, 19.50, 18.83; HRMS-ESI (m/z) $[M+H]^+$ calcd for $C_{27}H_{36}N_2O_7$, 500.2523. found, 500.2529.

Example 6

Step 1: Preparation of tert-butyl N-tert-butoxycar-bonyl-N-[(3S,7S,8R,9S)-8-hydroxy-9-methyl-7-(1-naphthylmethyl)-2-oxo-1,5-dioxonan-3-yl]carbamate

$$H_3C$$
 CH_3
 CH_3

To a solution of tert-butyl N-tert-butoxycarbonyl-N-[(3S, 7S,8R,9S)-9-methyl-7-(1-naphthylmethyl)-2-oxo-8-triiso-propylsilyloxy-1,5-dioxonan-3-yl]carbamate (2.54 g, 3.70 mmol) in THF (18.5 ml) was added TBAF (1.94 g, 7.41 mmol, 1M in THF) at room temperature. The reaction was stirred for 3.5 h, diluted with a ½ sat. aqueous NaCl solution (10 mL), and extracted with EtOAc (3×10 mL). The combined extracts were dried over Na₂SO₄, filtered, and concentrated to dryness under reduced pressure. The resulting clear oil was purified by flash chromatography (SiO₂, 0→50% acetone/hexanes) to afford tert-butyl N-tert-butoxycarbonyl-N-[(3S,7S,8R,9S)-8-hydroxy-9-methyl-7-(1-

20

naphthylmethyl)-2-oxo-1,5-dioxonan-3-yl]carbamate (1.41 g, 72%) as a white solid: $^1{\rm H}$ NMR (400 MHz, CDCl₃) δ 8.11 (dd, J=8.5, 1.4 Hz, 1H), 7.87-7.79 (m, 1H), 7.72 (d, J=8.1 Hz, 1H), 7.54-7.41 (m, 2H), 7.42-7.27 (m, 2H), 5.19 (dd, J=8.8, 5.7 Hz, 1H), 5.00-4.88 (m, 1H), 4.10 (dd, J=11.9, 5.8 5 Hz, 1H), 3.89 (dd, J=12.0, 8.7 Hz, 1H), 3.68-3.51 (m, 4H), 2.79 (t, J=12.2 Hz, 1H), 2.58-2.51 (m, 1H), 2.15 (q, J=8.7, 7.4 Hz, 1H), 1.51 (d, J=6.4 Hz, 3H), 1.46 (s, 18H); $^{13}{\rm C}$ NMR (101 MHz, CDCl₃) δ 169.95, 152.69, 135.84, 134.02, 132.04, 128.77, 127.46, 127.16, 126.03, 125.56, 125.25, 10 124.04, 83.17, 77.69, 76.26, 73.23, 70.87, 57.38, 46.90, 33.38, 27.92, 18.67; ESIMS m/z 553 ([M+Na]+).

Example 6

Step 2a-1: Preparation of tert-butyl N-tert-butoxy-carbonyl-N-[(3S,7S,8R,9S)-8-cyclopent-2-en-1-yloxy-9-methyl-7-(1-naphthylmethyl)-2-oxo-1,5-dioxonan-3-yl]carbamate

$$H_{3}C$$
 $H_{3}C$
 CH_{3}
 $H_{3}C$
 CH_{3}
 C

To a solution of tert-butyl N-tert-butoxycarbonyl-N-[(3S, 7S,8R,9S)-8-hydroxy-9-methyl-7-(1-naphthylmethyl)-2oxo-1,5-dioxonan-3-yl]carbamate (205 mg, 0.387 mmol), [Pd₂(dba)₃] (26.6 mg, 0.029 mmol), and dppf (32.5 mg, 0.058 mmol) in toluene (1.94 mL) was added (E) tert-butyl cyclopent-2-en-1-yl carbonate (250 mg, 1.355 mmol), and the mixture was warmed to 95° C. and stirred for 2 h. An additional portion of (E)-tert-butyl pent-2-en-1-yl carbonate (150 mg, 0.6 equiv.) was added to the reaction and stirring 55 continued for an additional 2 h. The mixture was cooled to room temperature and the toluene was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (12 mL), adsorbed to Celite® and purified by flash chromatography (SiO $_2$, 35 mL/min, 0 \rightarrow 25 EtOAc/hexanes) to provide 60 tert-butyl N-tert-butoxycarbonyl-N-[(3S,7S,8R,9S)-8-cyclopent-2-en-1-yloxy-9-methyl-7-(1-naphthylmethyl)-2oxo-1,5-dioxonan-3-yl]carbamate (205 mg, 89%) as a mixture of diastereomers (about 1:1) in the form of a white solid: 65 IR (thin film) 2928, 1755, 1709, 1117 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (m, 1H), 7.82 (m, 1H), 7.74-7.66 (m,

1H), 7.53-7.39 (m, 2H), 7.42-7.28 (m, 2H), 6.13-6.01 (m, 1.5H), 6.01-5.92 (m, 0.5H), 5.07 (app t, J=7.7 Hz, 1H), 4.90-4.79 (m, 2H), 4.02-3.83 (m, 2H), 3.76 (dd, J=13.6, 2.8 Hz, 1H), 3.55-3.39 (m, 3H), 2.82-2.66 (m, 1H), 2.60-2.47 (m, 1H), 2.34-2.17 (m, 2H), 2.11-1.92 (m, 3H), 1.57 (app dd, J=12.6, 6.4 Hz, 3H), 1.39 (app d, J=5.9 Hz, 18H); ESIMS m/z 618 ([M+Na]+).

Example 6

Step 2a-2: Preparation of tert-butyl N-tert-butoxy-carbonyl-N-[(3S,7S,8R,9S)-8-(cyclopentoxy)-9-methyl-7-(1-naphthylmethyl)-2-oxo-1,5-dioxonan-3-yl]carbamate (F132)

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

To a solution of tert-butyl N-tert-butoxycarbonyl-N-[(3S, 7S,8R,9S)-8-cyclopent-2-en-1-yloxy-9-methyl-7-(1-naphthylmethyl)-2-oxo-1,5-dioxonan-3-yl]carbamate (210 mg, 0.353 mmol) in EtOAc (3.5 mL) was added 10% Pd/C (37.5 mg, 0.035 mmol). The reaction was put under a H2 atmosphere (balloon) and stirred at room temperature for 5 h, whereupon the H₂ was purged from system and the reaction was filtered through a pad of Celite®. The pad was washed with EtOAc (2×6 mL) and the organics were combined and concentrated to dryness to afford tert-butyl N-tert-butoxycarbonyl-N-[(3S,7S,8R,9S)-8-(cyclopentoxy)-9-methyl-7-(1-naphthyl-methyl)-2-oxo-1,5-dioxonan-3-yl]carbamate (193 mg, 92%) as a white powder: mp 49-55° C.; ¹H NMR $(400 \text{ MHz}, \text{CDC1}_3) \delta 8.09 \text{ (d, J=8.3 Hz, 1H)}, 7.82 \text{ (dd, J=8.1,}$ 1.5 Hz, 1H), 7.74-7.67 (m, 1H), 7.54-7.41 (m, 2H), 7.40-7.31 (m, 2H), 5.05 (app t, J=7.7 Hz, 1H), 4.90-4.79 (m, 1H), 4.21-4.12 (m, 1H), 3.94 (dd, J=11.7, 7.5 Hz, 1H), 3.88 (dd, J=11.7, 8.0 Hz, 1H), 3.73 (dd, J=13.6, 2.9 Hz, 1H), 3.53-3.35 (m, 3H), 2.71 (app t, J=12.8 Hz, 1H), 2.07-1.96 (m, 1H), 1.90-1.70 (m, 6H), 1.63-1.49 (m, 5H), 1.38 (s, 18H); ESIMS m/z 620 ([M+Na]⁺).

25

Example 6

Step 2b: Preparation of [(3S,6S,7R,8S)-3-[bis(tert-butoxycarbonyl)amino]-6-methyl-8-(1-naphthylmethyl)-4-oxo-1,5-dioxonan-7-yl]2-methylpropanoate (F128)

H₃C

$$H_3C$$
 CH_3
 CH_3

To a solution of tert-butyl N-tert-butoxycarbonyl-N-[(3S, 7S,8R,9S)-8-hydroxy-9-methyl-7-(1-naphthylmethyl)-2oxo-1,5-dioxonan-3-yl]carbamate (290 mg, 0.548 mmol) and DMAP (201 mg, 1.64 mmol) in CH₂Cl₂ (2.7 mL) was 45 added isobutyryl chloride (86 μ L, 0.821 mmol) slowly to the flask and the resulting solution was stirred at room temperature for 20 h. The reaction mixture was dissolved in CH₂Cl₂ (4 mL), treated with Celite®, the solvent evaporated, and the 50 adsorbed crude material purified by flash chromatography $(SiO_2, 0 \rightarrow 15\% EtOAc/hexanes)$ to provide [(3S,6S,7R,8S)-3-[bis(tert-butoxycarbonyl)amino]-6-methyl-8-(1-naphthylmethyl)-4-oxo-1,5-dioxonan-7-yl]2-methylpropanoate (270 mg, 82%) as a white powder: mp 130-132° C.; ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.93 (m, 1H), 7.84 (dd, J=8.0, 1.5 Hz, 1H), 7.72 (d, J=8.1 Hz, 1H), 7.54-7.41 (m, 2H), 7.37 (dd, J=8.2, 7.0 Hz, 1H), 7.28 (dd, J=7.0, 1.3 Hz, 1H), 5.20 (dd, J=8.7, 5.7 Hz, 1H), 5.11 (app t, J=9.3 Hz, 1H), 5.08-4.97 60 (m, 1H), 4.06 (dd, J=11.8, 5.7 Hz, 1H), 3.86 (dd, J=11.9, 8.7 Hz, 1H), 3.66 (d, J=11.0 Hz, 1H), 3.50 (dd, J=10.8, 6.4 Hz, 1H), 3.23 (dd, J=14.0, 3.1 Hz, 1H), 2.74-2.55 (m, 2H), 2.37-2.20 (m, 1H), 1.42 (s, 18H), 1.37 (d, J=6.2 Hz, 3H), ₆₅ 1.26 (app dd, J=7.0, 4.4 Hz, 6H); ESIMS m/z 622 ([M+ $Na]^+$).

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

To a solution of tert-butyl N-tert-butoxycarbonyl-N-[(3S, 7S,8R,9S)-8-hydroxy-9-methyl-7-(1-naphthylmethyl)-2oxo-1,5-dioxonan-3-yl]carbamate (150 mg, 0.283 mmol), tritoluoylbismuth diacetate (255 mg, 0.425 mmol), and diacetoxycopper (7.72 mg, 0.042 mmol) was added N-cyclohexyl-N-methylcyclohexanamine (120 µL, 0.566 mmol). The mixture was warmed to 50° C. and stirring continued at this temperature for 14 h. The resulting thick slurry, was cooled to room temperature and loaded directly onto a silica gel precolumn and purified by flash chromatography (SiO₂, 30 mL/min, 0% EtOAc 1 min, 0→50% EtOAc/hexanes) to afford tert-butyl N-tert-butoxycarbonyl-N-[(3S,7S,8R,9S)-9-methyl-8-(4-methylphenoxy)-7-(1-naphthylmethyl)-2oxo-1,5-dioxonan-3-yl]carbamate (45 mg, 26%) as a colorless solid: ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.03 (m, 1H), 7.81 (dd, J=7.9, 1.6 Hz, 1H), 7.69 (d, J=8.1 Hz, 1H), 7.54-7.39 (m, 2H), 7.39-7.30 (m, 1H), 7.27 (dd, J=7.0, 1.4 Hz, 1H), 7.16-7.08 (m, 2H), 7.03-6.95 (m, 2H), 5.17 (dd, J=8.7, 6.5 Hz, 1H), 5.09-4.99 (m, 1H), 4.40 (app t, J=9.0 Hz, 1H), 4.08 (dd, J=11.7, 6.6 Hz, 1H), 3.91 (dd, J=11.7, 8.7 Hz, 1H), 3.63-3.48 (m, 3H), 2.69-2.64 (m, 1H), 2.37-2.26 (m, 4H), 1.47-1.38 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 169.99, 157.28, 152.59, 135.48, 133.98, 131.99, 130.55, 130.22, 128.67, 127.79, 127.09, 125.91, 125.43, 125.14, 124.04, 115.18, 83.05, 82.23, 75.40, 72.08, 70.65, 57.24, 46.50, 32.68, 27.84, 20.43, 19.10; ESIMS m/z 642 ([M+ $Na]^+$).

25

35

40

Steps 3a and 3b: Preparation of (3S,6S,7R,8S)-3-(3-hydroxy-4-methoxypicolin-amido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl

isobutyrate (F5)

$$H_3C$$
 CH_3
 CH_3

Step 3a

To a solution of [(3S,6S,7R,8S)-3-[bis(tert-butoxycarbonyl)amino]-6-methyl-8-(1-naphthylmethyl)-4-oxo-1,5-dioxonan-7-yl]2-methylpropanoate (260 mg, 0.434 mmol) in 45 $\rm CH_2Cl_2$ (1 mL) was added 4 M HCl in dioxane (2.17 mL, 8.67 mmol) slowly (gas evolution) and the resulting solution was stirred at room temperature for 2.5 h. The solvent was evaporated under a stream of N₂ to give (3S,7S,8R,9S)-8-(isobutyryloxy)-9-methyl-7-(naphthalen-1-ylmethyl)-2-oxo-1,5-dioxonan-3-aminium chloride as a white powder. The powder was dried under high vacuum for 20 h to remove residual HCl and was used without further purification for the amide picolinamide formation: ESIMS m/z 400 ([M+H] $^+$).

To a suspension of (3S,7S,8R,9S)-8-(isobutyryloxy)-9-methyl-7-(naphthalen-1-ylmethyl)-2-oxo-1,5-dioxonan-3-aminium chloride in CH_2Cl_2 (2 mL) were added PyBOP (248 mg, 0.477 mmol) and 3-hydroxy-4-methoxypicolinic 60 acid (81 mg, 0.477 mmol) followed by the dropwise addition of N-ethyl-N-isopropylpropan-2-amine (249 μ L, 1.43 mmol). After 10 min everything solubilized and stirring was continued for 2 h. The reaction was treated with Celite®, the solvent removed under reduced pressure, and the resulting 65 adsorbed crude material was purified by flash chromatography (SiO₂, 0 \rightarrow 100% EtOAc/hexanes) to provide (3S,6S,7R,

42

8S)-3-(3-hydroxy-4-methoxypicolin-amido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate as a white powder (210 mg, 88%): mp 139-142° C.; ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1H), 8.50 (d, J=8.3 Hz, 1H), 8.01-7.92 (m, 2H), 7.89-7.82 (m, 1H), 7.74 (d, J=8.2 Hz, 1H), 7.49 (dddd, J=14.7, 8.1, 6.9, 1.5 Hz, 2H), 7.40 (dd, J=8.2, 7.0 Hz, 1H), 7.30 (dd, J=6.9, 1.2 Hz, 1H), 6.84 (d, J=5.2 Hz, 1H), 5.20-5.02 (m, 3H), 4.04 (dd, J=11.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.60 (d, J=4.1 Hz, 2H), 3.43 (dd, ¹⁰ J=11.7, 7.1 Hz, 1H), 3.23 (dd, J=14.2, 3.2 Hz, 1H), 2.79-2.64 (m, 2H), 2.36-2.23 (m, 1H), 1.43-1.37 (m, 3H), 1.29 (dd, J=7.0, 3.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 176.37, 171.12, 168.88, 155.32, 148.71, 140.60, 134.68, 133.97, 131.94, 130.09, 128.97, 127.76, 127.35, 126.02, 125.57, ¹⁵ 125.37, 123.45, 109.55, 76.95, 74.38, 72.09, 56.07, 51.42, 44.93, 34.37, 32.19, 19.14, 19.07, 18.26; HRMS-ESI (m/z) $[M+H]^+$ calcd for $C_{30}H_{35}N_2O_8$ expected, 551.2388. found 551.2388.

Example 7

Preparation of (3S,6S,7R,8S)-3-(3-(acetoxymethoxy)-4-methoxypicolin-amido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate (F83)

$$H_3C-O$$
OH
 HN
 O
 CH_3
 CH_3

To a mixture of (3S,6S,7R,8S)-3-(3-hydroxy-4-methoxypicolinamido)-6-methyl-8-(naphthalen-1-ylm-55 ethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate (85 mg, 0.154 mmol) and K₂CO₃ (42.7 mg, 0.309 mmol) in acetone (2.0 mL) was added bromomethyl acetate (21.2 μL, 0.216 mmol), and the reaction was stirred vigorously at 50° C. under N₂ for 1 h. The reaction was cooled to room temperature, diluted with CH₂Cl₂ (10 mL), filtered, and treated with Celite®. The solvent was removed under reduced pressure and the resulting adsorbed crude material was purified by flash chromatography (SiO₂, 0→50% acetone/hexanes) to afford (3S,6S,7R,8S)-3-(3-(acetoxymethoxy)-4-methoxypicolinamido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1, 5-dioxonan-7-yl isobutyrate (70 mg, 0.112 mmol, 73% yield) as a white powder: mp 58-64° C.; ¹H NMR (400

MHz, CDCl₃) δ 8.37 (d, J=8.1 Hz, 1H), 8.24 (d, J=5.3 Hz, 1H), 8.02-7.94 (m, 1H), 7.89-7.81 (m, 1H), 7.74 (d, J=8.2 Hz, 1H), 7.56-7.43 (m, 2H), 7.40 (dd, J=8.2, 7.0 Hz, 1H), 7.30 (dd, J=7.1, 1.2 Hz, 1H), 6.92 (d, J=5.4 Hz, 1H), 5.71 (d, J=6.5 Hz, 2H), 5.17-5.06 (m, 3H), 4.04 (dd, J=11.6, 7.4 Hz, 5 1H), 3.89 (s, 3H), 3.60 (d, J=4.2 Hz, 2H), 3.40 (dd, J=11.7, 7.1 Hz, 1H), 3.23 (dd, J=14.2, 3.1 Hz, 1H), 2.77-2.63 (m, 2H), 2.29 (ddt, J=12.2, 8.1, 3.9 Hz, 1H), 2.04 (s, 3H), 1.39 (d, J=5.6 Hz, 3H), 1.29 (dd, J=7.0, 3.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) & 176.38, 171.75, 170.27, 163.15, 10 160.19, 145.74, 143.97, 142.01, 134.75, 133.97, 131.96, 128.95, 127.78, 127.32, 125.99, 125.54, 125.38, 123.50, 109.70, 89.40, 74.18, 72.32, 71.93, 56.18, 51.77, 44.97, 34.38, 32.25, 20.85, 19.14, 19.07, 18.28; HRMS-ESI (m/z) [M+H]+ calcd for $C_{33}H_{39}N_2O_{10}$ expected, 623.2599. found, 15 623.2611.

Example 8

Preparation of (3S,6S,7R,8S)-3-(3-acetoxy-4-methoxypicolinamido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate (F51)

To a solution of (3S,6S,7R,8S)-3-(3-hydroxy-4methoxypicolinamido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate (80 mg, 0.145 50 mmol) and DMAP (28.4 mg, 0.232 mmol) in CH₂Cl₂ (1.45 mL) was added acetyl chloride (218 μL, 0.218 mmol) slowly and the resulting mixture was stirred at room temperature for 14 h. The reaction mixture was treated with Celite®, the solvent removed under reduced pressure, and the resulting 55 adsorbed crude material was purified by flash chromatography (SiO₂, $0\rightarrow 100\%$ acetone/hexanes) to afford (3S,6S,7R, 8S)-3-(3-acetoxy-4-methoxypicolinamido)-6-methyl-8-(naphthalen-1-ylmethyl)-4-oxo-1,5-dioxonan-7-yl isobutyrate as a white powder (80 mg, 93%): mp 104-108° 60 C.; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J=8.2 Hz, 1H), 8.27 (d, J=5.4 Hz, 1H), 8.01-7.94 (m, 1H), 7.88-7.81 (m, 1H), 7.73 (d, J=8.2 Hz, 1H), 7.55-7.43 (m, 2H), 7.39 (dd, J=8.2, 7.0 Hz, 1H), 7.29 (dd, J=7.0, 1.2 Hz, 1H), 6.96 (d, J=5.4 Hz, 1H), 5.18-5.02 (m, 3H), 4.00 (dd, J=11.7, 7.4 Hz, 65 1H), 3.86 (s, 3H), 3.58 (d, J=4.2 Hz, 2H), 3.37 (dd, J=11.7, 7.2 Hz, 1H), 3.22 (dd, J=14.1, 3.1 Hz, 1H), 2.76-2.63 (m,

2H), 2.38 (s, 3H), 2.34-2.22 (m, 1H), 1.38 (d, J=5.7 Hz, 3H), 1.29 (d, J=3.7 Hz, 3H), 1.27 (d, J=3.7 Hz, 3H); $^{13}\mathrm{C}$ NMR (101 MHz, CDCl3) δ 176.38, 171.66, 168.84, 162.67, 159.42, 146.73, 141.03, 137.53, 134.77, 133.99, 131.98, 128.97, 127.78, 127.34, 126.01, 125.57, 125.39, 123.50, 109.95, 77.05, 74.20, 72.26, 71.84, 56.29, 51.51, 44.99, 34.38, 32.26, 20.73, 19.15, 19.08, 18.28; HRMS-ESI (m/z) [M+H]+ calcd for $\mathrm{C_{32}H_{37}N_2O_9}$ expected, 593.2494. found, 593.2502.

Example 9

Preparation of ((4-methoxy-2-(((3S,7S,8R,9S)-9-methyl-2-oxo-8-propoxy-7-(4-(trifluoromethyl)benzyl)-1,5-dioxonan-3-yl)carbamoyl)pyridin-3-yl)oxy) methyl 2-ethoxyacetate (F120)

To a solution of 3-hydroxy-4-methoxy-N-((3S,7S,8R,9S)-9-methyl-2-oxo-8-propoxy-7-(4-(trifluoromethyl)benzyl)-1, 5-dioxonan-3-yl)picolinamide (83 mg, 0.154 mmol) in acetone (2 mL) were added Na₂CO₃ (24.4 mg, 0.230 mmol), NaI (4.60 mg, 0.031 mmol), and chloromethyl 2-ethoxyacetate (30.5 mg, 0.200 mmol), and the mixture was stirred for 7 hours at 40° C. The reaction was cooled to room temperature and purified directly by flash chromatography (SiO₂, 0→100% EtOAc/hexanes) to give ((4-methoxy-2-(((3S,7S, 8R,9S)-9-methyl-2-oxo-8-propoxy-7-(4-(trifluoromethyl) benzyl)-1,5-dioxonan-3-yl)carbamoyl)pyridin-3-yl)oxy) methyl 2-ethoxyacetate as a colorless oil (94 mg, 93%): ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J=8.2 Hz, 1H), 8.26 (d, J=5.4 Hz, 1H), 7.61-7.50 (m, 2H), 7.32 (d, J=8.0 Hz, 2H), 6.95 (d, J=5.4 Hz, 1H), 5.80 (s, 2H), 5.04-4.95 (m, 2H), 4.08 (s, 2H), 4.03 (dd, J=11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.66 (dt,

J=8.6, 6.6 Hz, 1H), 3.63-3.47 (m, 3H), 3.47-3.36 (m, 3H), 3.23-3.12 (m, 2H), 2.43 (dd, J=13.7, 11.7 Hz, 1H), 2.01-1.90 (m, 1H), 1.69-1.58 (m, 2H), 1.51 (d, J=6.4 Hz, 3H), 1.22 (t, J=7.0 Hz, 3H), 0.97 (t, J=7.4 Hz, 3H); $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) δ –62.35; HRMS-ESI (m/z) [M]+ calcd for $_5$ $\mathrm{C_{31}H_{39}F_3N_2O_{10}}$ expected, 656.2557. found, 656.2569.

Example A

Evaluation of Fungicidal Activity: Leaf Blotch of Wheat (*Mycosphaerella graminicola*; Anamorph: Septoria tritici; Bayer Code SEPTTR)

Technical grades of materials were dissolved in acetone, which were then mixed with nine volumes of water containing 110 ppm Triton X-100. The fungicide solutions were applied onto wheat seedlings using an automated booth sprayer to run-off. All sprayed plants were allowed to air dry prior to further handling. All fungicides were evaluated using the aforementioned method for their activity vs. all target diseases. Wheat leaf blotch and brown rust activity were also evaluated using track spray applications, in which case the fungicides were formulated as EC formulations, containing 0.1% Trycol 5941 in the spray solutions.

Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix 25 until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore suspension of Septoria tritici either prior to or after fungicide treatments. After inoculation the plants were kept in 100% relative humidity (one day in a dark dew chamber 30 followed by two to three days in a lighted dew chamber at 20° C.) to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. When disease symptoms were fully expressed on the 1st leaves of untreated plants, infection 35 levels were assessed on a scale of 0 to 100 percent disease severity. Percent disease control was calculated using the ratio of disease severity on treated plants relative to untreated plants.

Example B

Evaluation of Fungicidal Activity: Wheat Brown Rust (*Puccinia triticina*; Synonym: *Puccinia* recondite f. sp. tritici; Bayer Code PUCCRT)

Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore 50 suspension of *Puccinia triticina* either prior to or after fungicide treatments. After inoculation the plants were kept in a dark dew room at 22° C. with 100% relative humidity overnight to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 24° 55 C. for disease to develop. Fungicide formulation, application and disease assessment followed the procedures as described in the Example A.

Example C

Evaluation of Fungicidal Activity: Wheat Glume Blotch (*Leptosphaeria nodorum*; Bayer Code LEPTNO)

Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix

46

until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated with an aqueous spore suspension of *Leptosphaeria nodorum* 24 hr after fungicide treatments. After inoculation the plants were kept in 100% relative humidity (one day in a dark dew chamber followed by two days in a lighted dew chamber at 20° C.) to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment followed the procedures as described in the Example A.

Example D

Evaluation of Fungicidal Activity: Apple Scab (Venturia inaequalis; Bayer Code VENTIN)

Apple seedlings (variety McIntosh) were grown in soilless Metro mix, with one plant per pot. Seedlings with two expanding young leaves at the top (older leaves at bottom of the plants were trimmed) were used in the test. Plants were inoculated with a spore suspension of *Venturia inaequalis* 24 hr after fungicide treatment and kept in a 22° C. dew chamber with 100% RH for 48 hr, and then moved to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example E

Evaluation of Fungicidal Activity: Grape Powdery Mildew (*Uncinula necator*; Bayer Code UNCINE)

Grape seedlings (variety Carignane) were grown in soilless Metro mix, with one plant per pot, and used in the test when approximately one month old. Plants were inoculated 24 hr after fungicide treatment by shaking spores from infected leaves over test plants. Plants were maintained in a greenhouse set at 20° C. until disease was fully developed. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example F

Evaluation of Fungicidal Activity: Powdery Mildew of Cucumber (*Erysiphe cichoracearum*; Bayer Code ERYSCI)

Cucumber seedlings (variety Bush Pickle) were grown in soil-less Metro mix, with one plant per pot, and used in the test when 12 to 14 days old. Plants were inoculated with a spore suspension 24 hr following fungicide treatments. After inoculation the plants remained in the greenhouse set at 20° C. until disease was fully expressed. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example G

60

Evaluation of Fungicidal Activity: Leaf Spot of Sugar Beets (*Cercospora beticola*; Bayer Code CERCBE)

Sugar beet plants (variety HH88) were grown in soil-less Metro mix and trimmed regularly to maintain a uniform

47

plant size prior to test. Plants were inoculated with a spore suspension 24 hr after fungicide treatments. Inoculated plants were kept in a dew chamber at 22° C. for 48 hr then incubated in a greenhouse set at 24° C. under a clear plastic hood with bottom ventilation until disease symptoms were 5 fully expressed. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example H

Evaluation of Fungicidal Activity: Asian Soybean Rust (*Phakopsora pachyrhizi*; Bayer Code PHAKPA)

Technical grades of materials were dissolved in acetone, which were then mixed with nine volumes of water containing 0.011% Tween 20. The fungicide solutions were applied onto soybean seedlings using an automated booth ²⁰ sprayer to run-off. All sprayed plants were allowed to air dry prior to further handling.

Soybean plants (variety Williams 82) were grown in soil-less Metro mix, with one plant per pot. Two weeks old seedlings were used for testing. Plants were inoculated either 3 days prior to or 1 day after fungicide treatments. Plants were incubated for 24 h in a dark dew room at 22° C. and 100% RH then transferred to a growth room at 23° C. for disease to develop. Disease severity was assessed on the sprayed leaves.

Example I

Evaluation of Fungicidal Activity: Wheat Powdery Mildew (*Blumeria graminis* f. sp. *tritici*; Synonym: *Erysiphe graminis* f. sp. *tritici*; Bayer Code ERYSGT)

Wheat plants (variety Yuma) were grown from seed in a greenhouse in 50% mineral soil/50% soil-less Metro mix until the first leaf was fully emerged, with 7-10 seedlings per pot. These plants were inoculated by dusting with infected stock plants 24 hr after fungicide treatments. After inoculation the plants were kept in a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example J

Evaluation of Fungicidal Activity: Barley Powdery Mildew (*Blumeria graminis* f. sp. *hordei*; Synonym: *Erysiphe graminis* f. sp. *hordei*; Bayer Code ERYSGH)

Barley seedlings (variety Harrington) were propagated in soil-less Metro mix, with each pot having 8 to 12 plants, and 60 used in the test when first leaf was fully emerged. Test plants were inoculated by dusting with infected stock plants 24 hr after fungicide treatments. After inoculation the plants were kept in a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment 65 on the sprayed leaves followed the procedures as described in the Example A.

48

Example K

Evaluation of Fungicidal Activity: Barley Scald (*Rhyncosporium secalis*; Bayer Code RHYNSE)

Barley seedlings (variety Harrington) were propagated in soil-less Metro mix, with each pot having 8 to 12 plants, and used in the test when first leaf was fully emerged. Test plants were inoculated by an aqueous spore suspension of *Rhyncosporium secalis* 24 hr after fungicide treatments. After inoculation the plants were kept in a dew room at 20° C. with 100% relative humidity for 48 hr. The plants were then transferred to a greenhouse set at 20° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example L

Evaluation of Fungicidal Activity: Rice Blast (Magnaporthe grisea; Anamorph: Pyricularia oryzae; Bayer Code PYRIOR)

Rice seedlings (variety Japonica) were propagated in soil-less Metro mix, with each pot having 8 to 14 plants, and used in the test when 12 to 14 days old. Test plants were inoculated with an aqueous spore suspension of *Pyricularia oryzae* 24 hr after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 hr to permit spores to germinate and infect the leaf. The plants were then transferred to a greenhouse set at 24° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example M

Evaluation of Fungicidal Activity: Tomato Early Blight (*Alternaria solani*; Bayer Code ALTESO)

Tomato plants (variety Outdoor girl) were propagated in soil-less Metro mix, with each pot having one plant, and used when 12 to 14 days old. Test plants were inoculated with an aqueous spore suspension of *Alternaria solani* 24 hr after fungicide treatments. After inoculation the plants were kept in 100% relative humidity (one day in a dark dew chamber followed by two to three days in a lighted dew chamber at 20° C.) to permit spores to germinate and infect the leaf. The plants were then transferred to a growth room at 22° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

Example N

Evaluation of Fungicidal Activity: Cucumber Anthracnose (*Glomerella lagenarium*; Anamorph: *Colletotrichum lagenarium*; Bayer Code COLLLA)

Cucumber seedlings (variety Bush Pickle) were propagated in soil-less Metro mix, with each pot having one plant, and used in the test when 12 to 14 days old. Test plants were inoculated with an aqueous spore suspension of *Colletotrichum lagenarium* 24 hr after fungicide treatments. After inoculation the plants were kept in a dew room at 22° C. with 100% relative humidity for 48 hr to permit spores to germinate and infect the leaf. The plants were then transferred to a growth room set at 22° C. for disease to develop. Fungicide formulation, application and disease assessment on the sprayed leaves followed the procedures as described in the Example A.

TABLE 1

TABLE I			
Compound	Compound Structure and Appearance	Prepared According to	
Number	Structure	Example	Appearance
F1	$H_3C - O$ OH HN O	Example 6, Step 3b	White Powder
F2	$H_3C \longrightarrow OH$ HN O	Example 6, Step 3b	White Solid
F3	H_3C-O OH O CH_3 O	Example 6, Step 3b	White Solid
F4	H_3C OH O CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	White Powder
F5	$H_3C - O$ OH O CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	White Powder

TABLE 1-continued

Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance	
F6	$H_3C \longrightarrow OH$ OH OH OH OH OH OH OH	Example 6, Step 3b	White Solid	
F7	H_3C — O OH O CH_3 CH_3	Example 6, Step 3b	White Powder	
F8	H_3C — O OH OH OH OH OH OH OH	Example 6, Step 3b	White Solid	
F9	$H_3C \longrightarrow OH$ OH OH OH OH OH OH OH	Example 6, Step 3b	White Powder	
F10	$H_3C \longrightarrow O$ OH O CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	White Solid	

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F11	H_3C-O OH O CH_3 O O CH_3 O	Example 6, Step 3b	White Powder
F12	H_3C — O OH HN HN CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	White Powder
F13	H_3C-O OH HN O	Example 6, Step 3b	White Powder
F14	H_3C O OH O CH_3 CH_3 CH_3 O OH OH OH OH OH OH OH	Example 6, Step 3b	White Powder

TABLE 1-continued				
	Compound Structure and Appearance			
Compound Number	Structure	Prepared According to Example	Appearance	
F15	H_3C-O OH HN HN HN HN HN HN HN HN	Example 6, Step 3b	Colorless Oil	
F16	$H_3C \longrightarrow O$ OH O CH_3 CH_3	Example 6, Step 3b	Colorless Oil	
F17	H_3C — O OH OH OH OH OH OH OH	Example 6, Step 3b	Colorless Oil	
F18	H_3C — O OH HN HN O OH OH OH OH OH OH OH	Example 6, Step 3b	Colorless Oil	

TABLE 1-continued					
	Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance		
F19	H_3C — O OH HN HN O CH_3 CH_3	Example 6, Step 3b	Colorless Oil		
F20	H_3C-O OH HN HN O	Example 6, Step 3b	Colorless Film		
F21	H_3C — O OH HN HN HN HN HN HN HN HN	Example 5, Step 1b	Colorless Oil		
F22	H_3C-O OH HN O O CH_3 O	Example 6, Step 3b	Colorless Oil		

TABLE I Communed			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F23	H_3C — O OH HN O OH OH OH OH OH OH OH	Example 6, Step 3b	Colorless Oil
F24	H_3C-O OH HN O CH_3 CH_3	Example 6, Step 3b	Colorless Oil
F25	H_3C — O OH O OH O OH OH OH OH	Example 6, Step 3b	Colorless Oil
F26	H_3C-O OH HN O	Example 6, Step 3b	Colorless Amorphous Solid

	Compound Structure and Appearance		
	Compound Structure and Appearance	Prepared	
Compound		According to	
Number	Structure	Example	Appearance
F27	H_3C-O OH HN HN O CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	Colorless Oil
F28	$H_3C \longrightarrow O$ OH O CH_3 O	Example 6, Step 3b	Colorless Oil
F29	$H_3C \longrightarrow OH$ OH OH OH OH OH OH OH	Example 6, Step 3b	Colorless Oil
F30	H_3C — O OH HN O CH_3	Example 6, Step 3b	Colorless Oil

TABLE 1-continued

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F31	H_3C — O OH O CH_3 O	Example 6, Step 3b	Colorless Oil
F32	H_3C-O OH HN HN CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	Colorless Oil
F33	$H_3C \longrightarrow O$ OH HN HN HN HN HN HN HN HN	Example 6, Step 3b	Colorless Solid
F34	$H_3C - O$ OH O CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	Colorless Oil
F35	H_3C-O OH O CH_3 F F F CH_3 CH_3	Example 6, Step 3b	Colorless Solid

	TABLE 1-Continued		
	Compound Structure and Appearance		
		Prepared According	
Compound Number	Structure	to Example	Appearance
F36			
1.50	H_3C-O OH O	Step 3b	Colorless Oil
F37	$_{ m O}$ $_{ m H_3}^{ m CH_3}$	Example 6,	Colorless Oil
	$H_3C \longrightarrow OH$ OH OH OH OH OH OH OH	Step 3b	
F38	${\rm C}_{\!$	Example 6, Step 3b	Colorless Solid
	$H_3C \longrightarrow OH$ OH OH OH OH OH OH OH		
F39	O CH ₃	Example 6, Step 3b	Colorless Oil
	$H_3C \longrightarrow OH$ HN HN CH_3 CH_3		
F40	CH ₃	Example 5, Step 1b	Colorless Oil
	H_3C OH O		

	TABLE 1-continued			
	Compound Structure and Appearance			
Compound Number	Structure	Prepared According to Example	Appearance	
F41	H_3C OH O O CH_3 CH_3 CH_3 O O CH_3 O	Example 6, Step 3b	White Solid	
F42	H_3C-O OH O CH_3	Example 6, Step 3b	White Solid	
F43	H_3C — O OH HN $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Example 6, Step 3b	White Solid	
F44	H_3C-O OH HN HN CH_3 CH_3	Example 6, Step 3b	White Solid	

	Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance		
F45	H_3C-O OH HN HN O	Example 6, Step 3b	White Solid		
F46	H_3C — O OH CH_3 CH_3 CH_3 CH_3	Example 6, Step 3b	White Solid		
F47	H_3C — O OH O CH_3 O	Example 6, Step 3b	White Solid		
F48	H_3C O OH CH_3 CH_3 CH_3 CH_3 CH_3	Example 5, Step 1b	White Foam		
F49	$H_3C \longrightarrow O$	Example 8	White Powder		

TABLE 1-continued						
	Compound Structure and Appearance					
Compound Number	Structure	Prepared According to Example	Appearance			
F50	H_3C O O CH_3	Example 8	White Solid			
F51	$H_3C - O$ O O O O O O O O O	Example 8	White Powder			
F52	$H_3C \longrightarrow O$ HN O CH_3 CH_3 CH_3	Example 8	White Powder			
F53	$H_3C \longrightarrow O$ O O O O O O O O O	Example 8	Sticky White Solid			

	TABLE 1-continued			
Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance	
F54	$H_3C \longrightarrow O \longrightarrow O \longrightarrow CH_3 \longrightarrow$	Example 8	White Powder	
F55	$H_3C - O$ O O O O O O O O O	Example 8	Colorless Oil	
F56	H_3C O	Example 8	White Powder	
F57	H_3C-O O O O O O O O O O	Example 8	White Solid	

	TABLE I continued		
	Compound Structure and Appearance		
Compound Number	Ac	Prepared ccording to	Appearance
F58	$H_3C \longrightarrow O$ HN O CH_3 CH_3 CH_3 CH_3	xample 8	Colorless Amorphous Solid
F59	$H_3C \longrightarrow O$	8 8	Colorless Oil
F60	$\begin{array}{c} CH_3 \\ H_3C - O \\ \hline \\ N \\ \end{array}$	xample 8	Colorless Oil
F61	$H_3C \longrightarrow O$ HN $H_3C \longrightarrow O$ CH_3 CH_3 CH_3 CH_3	xample 8	Colorless Amorphous Solid

	TABLE 1-continued		
	Compound Structure and Appearance		
		Prepared According	
Compound Number	Structure	to Example	Appearance
F62	$\begin{array}{c} O = \begin{array}{c} CH_3 \\ \\ O = \begin{array}{c} CH_3 \\ \\ O \end{array} \end{array}$	Example 8	Colorless Oil
F63	$H_3C \longrightarrow O$	Example 8	Colorless Amorphous Solid
F64	$_{ m CH_3}$	Example 8	Colorless Film
	H_3C-O O O O O O O O O O		
F65	CH_3	Example 8	Colorless Oil

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F66	H_3C-O O O O O O O O O O	Example 8	Colorless Amorphous Solid
F67	CH_3	Example 8	Colorless Oil
F68	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 8	Colorless Oil
F69	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 8	Colorless Oil

TABLE 1-continued						
	Compound Structure and Appearance					
Compound Number	Prepared According to Structure Example	Appearance				
F70	$\begin{array}{c} CH_3 \\ H_3C - O \\ \hline \\ N \end{array} \begin{array}{c} CH_3 \\ \hline \\ O \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \end{array}$	Colorless Oil				
F71	CH_3 Example 8 H_3C-O O O O O O O O O O	Colorless Oil				
F72	$\begin{array}{c} CH_3 \\ H_3C - O \\ \hline \\ N \end{array} \begin{array}{c} CH_3 \\ \hline \\ F \end{array} \begin{array}{c} CH_3 \\ \hline \\ F \end{array} \begin{array}{c} CH_3 \\ \hline \\ F \end{array} \begin{array}{c} Example~8 \\ \hline \\ F \end{array}$	Colorless Oil				
F73	$\begin{array}{c} CH_3 \\ H_3C - O \\ \hline \\ N \end{array} \begin{array}{c} CH_3 \\ \hline \\ O \\ \hline \\ O \end{array} \begin{array}{c} CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \end{array}$	White Solid				

	TABLE 1 commune		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F74	H_3C-O O CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 8	White Solid
F75	$\begin{array}{c} O = \begin{array}{c} CH_3 \\ O = \begin{array}{c} CH_3 \\ O = \begin{array}{c} CH_3 \\ O = \end{array} \end{array}$	Example 8	White Solid
F76	$H_3C \longrightarrow O$ HN O CH_3 CH_3 CH_3 CH_3	Example 8	White Solid
F77	$H_3C \longrightarrow O$ $O \longrightarrow CH_3$	Example 8	White Solid

TABLE 1-continued					
Compound Structure and Appearance					
Compound Number Structure	Prepared According to Example Appearance				
F78 $O = CH_3$ $H_3C - O$ O O O O O O O O O	Example 8 White Solid				
F79 $O = CH_3$ $H_3C = O$ $O = O$ $O = CH_3$ $O = O$	Example 8 White Solid ${ m H}_3$				
$\begin{array}{c} \text{F80} \\ \text{H}_{3}\text{C} - \text{O} \\ \text{N} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{O} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array}$	Example 8 White Foam				
F81 $O \longrightarrow O$	Example 7 White Powder				

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F82	CH ₃	Example7	Viscous Oil
	$H_3C \longrightarrow O$ HN O CH_3 CH_3 CH_3		
F83	$O = \begin{array}{c} CH_3 \\ \\ O \\ \\ O \end{array}$	Example 7	White Powder
	H ₃ C — O O CH ₃		
F84	$_{\rm CH_3}$	Example 7	White Powder
	$H_3C \longrightarrow O$		
F85	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	White Solid

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F86	$O \longrightarrow O$ $O \longrightarrow $	Example 7	Slightly Yellow Oil
F87	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F88	$O \longrightarrow CH_3$ $H_3C \longrightarrow O$ HN O CH_3 CH_3	Example 7	White Powder

TABLE 1-continued			
Compound Structure and Appearance			
Compound Number Structure	Prepared According to Example	Appearance	
F89 $O \longrightarrow CH_3$	Example 7	White Powder	
F90 CH_3 $H_3C - O$ H_3C	Example 7	White Powder	
F91 $O \longrightarrow O$ $O \longrightarrow O$ CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	White Powder	

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F92	CH ₃	Example 7	Colorless Oil
	H_3C-O O O O O O O O O O		
F93	$O \longrightarrow O$ $O \longrightarrow $	Example 7	Colorless Oil
F94	CH_3 H_3C-O O O O O O O O O O	Example 7	Colorless Oil

	TABLE 1-continued		70
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F95	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F96	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F97	CH_3	Example 7	Colorless Oil

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F98	$O = \bigcup_{O}^{CH_3}$	Example 7	Colorless Oil
F99	$O = CH_3$ $O = $	Example 7	Colorless Oil
F100	$O \longrightarrow O$ $O \longrightarrow $	Example 7	Colorless Oil

TABLE 1-continued

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F101	CH_3	Example 7	Colorless Oil
F102	$O = \bigcup_{O} CH_3$ $H_3C = O$ $O = \bigcup_{HN \text{III}} O = \bigcup_{O} CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F103	$O \longrightarrow CH_3$ $O \longrightarrow O$	Example 7	Colorless Oil

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F104	$O \longrightarrow O$ $O \longrightarrow $	Example 7	Pale Pink Oil
F105	CH_3	Example 7	Colorless Oil
F106	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F107	$O = \bigcup_{O} CH_3$ $H_3C = O$ $O = \bigcup_{HN \text{ III}} O = \bigcup_{CH_3} F$ CH_3 CH_3	Example 7	Colorless Oil

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F108	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	Colorless Oil
F109	$\begin{array}{c} CH_3 \\ O \\ \hline \\ N \end{array}$	Example 7	Colorless Oil
F110	$O \longrightarrow CH_3$ $O \longrightarrow $	Example 7	White Solid

TABLE 1-continued	100
Compound Structure and Appearance	
Compound Number Structure	Prepared According to Example Appearance
F111 $O \longrightarrow CH_3$ $O \longrightarrow $	Example 7 White Solid
F112 $O \longrightarrow O$ $O \longrightarrow O$ CH_3 $O \longrightarrow O$ CH_3 $O \longrightarrow O$ CH_3 $O \longrightarrow O$ $O $	Example 7 Yellow Solid
F113 $O \longrightarrow CH_3$ $O \longrightarrow CH_3$	Example 7 White Solid

Example 7 White S
$$O = CH_3$$
 $O = CH_3$ O

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F114	CH ₃	Example 7	Yellow Solid
	H_3C-O O O CH_3 CH_3 CH_3 CH_3		
F115	CH ₃	Example 7	Sticky Yellow Solid
	H_3C O O CH_3 CH_3 CH_3 CH_3		
F116	CH ₃	Example 7	Yellow Oil
	$H_3C \longrightarrow O$ HN O CH_3 CH_3		
F117	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 7	White Foam

	TABLE 1 continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F118	$O \longrightarrow CH_3$	Example 7	Colorless Oil
	H_3C-O O O CH_3 O		
F119	$O \longrightarrow CH_3$	Example 7	White Solid
	H_3C O O CH_3 CH_3 O O O CH_3 O		
F120	$_{3}^{\mathrm{H}_{3}\mathrm{C}}$	Example 9	Colorless Oil
	O = O O O O O O O O O O O O O O O O O O		

TABLE 1-continued

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F121	$_{ m H_3C}$	Example 9	Clear Gel
	$H_3C \longrightarrow O$ HN $H_3C \longrightarrow O$ CH_3 CH_3 CH_3		
F122	$_{ m H_3C}$	Example 9	Clear Gel
	$H_3C \longrightarrow O$ HN O CH_3 CH_3 CI		
F123	$_{ m H_3C}$	Example 8	White Solid
	H_3C O O O CH_3 O CH_3 O		

	Compound Structure and Appearance			
Compound Number	Structure	Prepared According to Example	Appearance	
F124	H_3C CH_3 N_{11} CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil	
F125	H_3C CH_3	Example 6, Step 2a-2	Oil	
F126	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil	
F127	H_3C CH_3	Example 6, Step 2a-2	Colorless Oil	

TABLE I Continued					
	Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance		
F128	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	White Powder		
F129	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Off-White Solid		
F130	H_3C CH_3 H_3C CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil		
F131	H_3C CH_3 H_3C CH_3 CH_3 CH_3	Example 6, Step 2c	Colorless Solid		

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F132	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	White Powder
F133	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	White Powder
F134	H_3C CH_3 H_3C CH_3 CH_3 CH_3	Example 6, Step 2a-2	White Solid
F135	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	White Powder

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F136	H_3C CH_3 O	Example 6, Step 2b	White Solid
F137	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	White Solid
F138	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	Colorless Oil
F139	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2c	Colorless Film

	Compound Structure and Appearance				
Compound Number	Structure	Prepared According to Example	Appearance		
F140	H_3C CH_3 H_3C CH_3 H_3C CH_3	Example 6, Step 2a-2	Colorless Oil		
F141	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil		
F142	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil		
F143	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	Example 4, Step 1	Colorless Oil		

TABLE 1-continued

TABLE 1-continued				
	Compound Structure and Appearance	Prepared		
Compound Number	Structure	According to Example	Appearance	
F144	H_3C CH_3 O O O O CH_3 O	Example 6, Step 2b	Colorless Oil	
F145	H_3C CH_3 CH_3 CH_3 F F F	Example 6, Step 2a-2	Colorless Oil	
F146	H_3C CH_3 CH_3 CH_3 CH_3	Example 6, Step 2c	Colorless Film	
	H_3C O			
F147	H_3C CH_3 O	Example 6, Step 2a-2	Colorless Oil	

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example Appearance	
F148	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Colorless Oil Step 2b	
F149	H_3C CH_3	Example 6, Colorless Oil Step 2a-2	
F150	H_3C CH_3 H_3C CH_3 O	Example 6, Colorless Oil Step 2a-2	

TABLE 1-continued

1ABLE 1-continued				
	Compound Structure and Appearance	Prepared		
Compound		According to		
Number	Structure	Example	Appearance	
F151	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil	
F152	$\begin{array}{c} \text{F} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{C} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ C$	Example 6, Step 2b	Colorless Oil	
F153	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil	
F154	H_3C CH_3	Example 6, Step 2a-2	Colorless Oil	

TABLE 1-continued

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F155	H_3C CH_3 H_3C CH_3 O	Example 6, Step 2a-2	Colorless Oil
F156	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil
F157	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil
F158	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	Colorless Oil
F159	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2c	Colorless Oil

	Compound Structure and Appearan	ce	
Compound Number	Structure	Prepared According to Example	Appearance
F160	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil
F161	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2a-2	Colorless Oil
F162	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 4, Step 1	Colorless Oil
F163	H_3C CH_3	Example 6, Step 2b	White Solid

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F164	H_3C CH_3	Example 6, Step 2a-2	Sticky White Solid
F165	H_3C CH_3	Example 6, Step 2a-2	Clear Gel
F166	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2c	Clear Oil
F167	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 2b	White Solid

TABLE 1-continued

TABLE 1-continued				
	Compound Structure and Appearance			
		Prepared		
Compound		According to		
Number	Structure	Example	Appearance	
F168	H_3C CH_3 CH_3 CH_3	Example 6, Step 2a-2	Clear Oil	
	1130	•		
	O—————————————————————————————————————			
	Nim			
	H_3C			
	H ₃ C CH ₃			
F169	H₃C CH₃	Example 6,	Clear Oil	
	H_3C \downarrow	Step 2		
	O—————————————————————————————————————			
	Num			
	H ₃ C Ö			
	H ₃ C CH ₃			
F170		Example 4	Colorless, Sticky	
11,0	O.	Step 1	Oil.	
	HNIIII-O CH3			
	0			
	$_{\mathrm{H_3C}}$			
	H ₃ C CH ₃			
	ČH ₃			
F171	O_{\bullet} Π_{3}	Example 6, Step 3a	White Solid	
	HCI OmO	•		
	H ₂ NIII			
F172	O_{3} F	Example 6, Step 3a	White Solid	
	HCl F	мер за		
	H_2 Nım.			
	Ĭ Ĭ			

	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F173	HCI H_2N O O CH_3 O CH_3	Example 6, Step 3a	White Solid
F174	HCl H_2N H_2N H_3 H_3 H_3 H_4 H_5	Example 6, Step 3a	White Powder
F175	HCI H_2N O	Example 6, Step 3a	White Powder
F176	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Example 6, Step 3a	White Powder
F177	HCl H_2N O	Example 6, Step 3a	White Powder

TABLE 1-continued

TABLE 1-continued			
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to	Ammagranaa
	Structure	Example	Appearance
F178	HCl H_2N O O CH_3 CH_3	Example 6, Step 3a	White Solid
F179	HCI H_2N O	Example 6, Step 3a	White Powder
F180	HCl H_2N_1 O O CH_3 CH_3 CH_3	Example 6, Step 3a	White Powder
F181	HCI H_2N_1 O O CH_3 CH_3 CH_3	Step 3a	White Solid
F182	HCl H_2 NimO CH_3 CH_3 CH_3 CH_3	Example 6, Step 3a	White Powder

TABLE 1-continued

IABLE 1-continued						
Compound Structure and Appearance						
		Prepared According				
Compound Number	Structure	to Example	Appearance			
F183	HCI H_2N_{11} O	Example 6, Step 3a	White Powder			
F184	HCl H_2N_{111} O O CH_3 O CH_3 O CH_3	Example 6, Step 3a	White Powder			
F185	HCl H_2N_1 O	Example 6, Step 3a	Colorless Oil			
F186	HCI H_2N O	Example 6, Step 3a	_			
F187	HCI H_2N F F F F	Example 6, Step 3a	_			

	TABLE 1-continued		
	Compound Structure and Appearance		
Compound Number	Structure	Prepared According to Example	Appearance
F188	HCI H_2N F	Example 6, Step 3a	
F189	HCl H_2N O O CH_3 CH_3 CH_3	Example 6, Step 3a	Colorless Film
F190	$\begin{array}{c} \text{HCl} \\ \text{H}_2\text{Nim} \\ \text{O} \\ \end{array}$	Example 6, Step 3a	Colorless Oil
F191	HCl H_2N_1 O O CH_3 CH_3 CH_3 CH_3	Example 5, Step 1a	White Solid

TABLE 1-continued

	TABLE 1-Continued					
Compound Structure and Appearance						
Compound Number	Structure	Prepared According to Example	Appearance			
F192	HCl H_2N_1 O CH_3 CH_3 CH_3	Example 6, Step 3a	Pale Yellow Amorphous Solid			
F193	$\begin{array}{c} \text{HCl} \\ \text{H}_2\text{Nim.} \\ \text{O} \\ \text{CH}_3 \end{array}$	Example 6, Step 3a				
F194	HCI H_2N_1 H_2N_1 H_2N_1 H_3 H_3 H_4 H_5	Example 6, Step 3a				
F195	HCl H_2N O CH_3 CH_3 CH_3	Example 6, Step 3a	Colorless Film			

TABLE 1-continued

	TABLE 1-continued		
	Compound Structure and Appearance	Prepared	
C 1		According	
Compound Number	Structure	to Example	Appearance
F196	HCl H_2Nm O	Example 6, Step 3a	_
F197	F F F F F F F F F F	Example 6, Step 3a	Colorless Oil
F198	$F \downarrow F$ HCl H_2Nim O O O O O O O	Example 6, Step 3a	Colorless Oil
F199	F F F F	Example 6,	Colorless Oil
	HCl H_2N H_2N H_3 H_4 H_5 H_5 H_5 H_5 H_5 H_5 H_6 H_7 H_8	Step 3a	

TABLE 1-continued

IABLE 1-continued								
	Compound Structure and Appearance							
		Prepared According						
Compound		to						
Number	Structure	Example	Appearance					
F200	HCI H_2N_1 O O CH_3 O CH_3 O O O O	Example 6, Step 3a	Colorless Oil					
F201	$F = F$ HCl H_2N O O O O O O O	Example 6, Step 3a	Colorless Film					
F202	$F = F$ HCl H_2N_{HI} O O O O O O O	Example 6, Step 3a	Colorless Oil					
F203	$F \sim F$ HCl H_2N O O O O O O O	Example 6, Step 3a	Colorless Oil					
F204	$F = F$ HCl H_2N_{11} O O CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3a	Colorless Semi Solid					

	Compound Structure and Appearance	e
Compound Number	Structure	Prepared According to Example Appearance
F205	$HC1$ H_2N CH_3 CH_3 CH_3 CH_3	Example 6, Colorless Oil Step 3a
F206	HCI H_2N O	Example 6, Colorless Oil Step 3a
F207	HCl H_2 NimO CH_3 CH_3 CH_3	Example 6, Colorless Film Step 3a
F208	HCI H_2N CH_3 CH_3 CH_3	Example 6, — Step 3a
F209	$HC1$ H_2N O O CH_3 CH_3 CH_3	Example 6, Colorless Film Step 3a

Compound Structure and Appearance						
Compound Number	Structure	Prepared According to Example	Appearance			
F210	HCl H_2N H_2N H_3 H_4 H_5 H_5 H_5 H_5 H_5 H_5 H_6 H_7 H_8	Example 5, Step 1a	Colorless Solid			
F211	HCl H_2NIII O CH_3 CH_3 CH_3 CH_3 CH_3	Example 6, Step 3a	White Solid			
F212	HCI H_2NIIII O O CH_3 CH_3 CH_3 CH_3	Example 6, Step 3a	White Solid			
F213	HCl H_2Num CH_3 CH_3 CI	Example 6, Step 3a	White Solid			

TABLE 1-continued

IABLE 1-continued							
	Compound Structure and Appearance						
Compound	Characteria	Prepared According to	A				
Number	Structure	Example	Appearance				
F214	HCI $_{\mathrm{H_2Nu}}$ O $_{\mathrm{Cl}}$ $_{\mathrm{CH_3}}$	Example 6, Step 3a	Tan Solid				
F215	HCI H_2N H_2N H_3 H_3 H_4 H_5	Step 3a	White Solid				
F216	HCI H_2N H_2N H_3 H_3 H_4 H_5	Example 6, Step 3a	White Solid				
F217	HCI H_2N O O CH_3 O CH_3	Example 6, Step 3a	White Solid				
F218	HCI H_2Num O CH_3 CH_3 CH_3 CH_3	Example 5, Step 1a	White Solid				

TABLE 2

	IADLE 2				
				Analytical Data	
Cmpd No.	MP (° C.)	${\rm IR} \atop ({\rm cm}^{-1})$	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F1	51-58	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₈ H ₃₇ N ₂ O ₇ , 513.2595; found, 513.2600	¹ H NMR (CDCl ₃) δ 11.99 (s, 1H), 8.64 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.33-7.24 (m, 2H), 7.22-7.14 (m, 3H), 6.86 (d, J = 5.2 Hz, 1H), 5.07-4.90 (m, 2H), 4.14 (dd, J = 11.8, 6.4 Hz, 1H), 4.01-3.90 (m, 4H), 3.73 (dd, J = 11.4, 1.8 Hz, 1H), 3.68-3.58 (m, 2H), 3.23 (app t, J = 8.2 Hz, 1H), 2.76 (ddd, J = 13.7, 11.0, 4.7 Hz, 1H),	_
F2	78-81	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for $C_{27}H_{34}F_{3}N_{2}O_{7}$, 555.2313; found, 555.2327	2.60 (ddd, J = 13.7, 10.3, 6.2 Hz, 1H), 2.10-1.96 (m, 1H), 1.79-1.37 (m, 13H) ¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.62 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 7.34-7.24 (m, 2H), 7.24-7.14 (m, 3H), 6.87 (d, J = 5.2 Hz, 1H), 5.07-4.92 (m, 2H), 4.12 (dd, J = 11.8, 7.0 Hz, 1H), 3.94 (s, 3H), 3.73 (dd, J = 10.9, 1.8 Hz, 1H), 3.68-3.60 (m, 2H), 3.60-3.53 (m, 1H), 3.53-3.45 (m, 1H), 3.10 (app t, J = 8.8 Hz, 1H), 2.79 (ddd, J = 14.3, 1.50 (m, 1H), 2.79 (dd, J = 14.3, 1.50 (m, 1H), 2.79 (dd, J = 14.3, 1.50 (m, 1H), 2.79 (dd, J = 14.3, 1.50 (m, 1H), 2.50 (m, 1H),	
F3	96-98	_	HRMS-ESI (m/z) [M + H]* calcd for C ₂₈ H ₃₉ N ₂ O ₇ , 515.2752; found, 515.2767	10.2, 4.8 Hz, 1H), 2.56 (ddd, J = 13.7, 9.8, 6.8 Hz, 1H), 2.23-2.06 (m, 2H), 1.93-1.83 (m, 1H), 1.83-1.74 (m, 2H), 1.73-1.67 (m, 1H), 1.62-1.48 (m, 1H), 1.45 (d, J = 6.4 Hz, 3H) 1H NMR (CDCl ₃) δ 11.98 (s, 1H), 8.65 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.33-7.24 (m, 2H), 7.23-7.14 (m, 3H), 6.86 (d, J = 5.2 Hz, 1H), 5.07-4.93 (m, 2H), 4.10 (dd, J = 11.7, 7.0 Hz, 1H), 3.92 (s, 3H), 3.76 (dd, J = 11.1, 1.6 Hz, 1H), 3.67 (dd, J = 11.8, 6.4 Hz, 1H), 3.61 (dd, J = 11.0, 6.3 Hz, 1H),	
F4	117-120	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₇ H ₃₇ N ₂ O ₇ , 501.2595; found 501.2591	3.57-3.40 (m, 2H), 3.07 (app t, J = 9.0 Hz, 1H), 2.77 (ddd, J = 13.7, 10.9, 4.7 Hz, 1H), 2.57 (ddd, J = 13.7, 10.4, 6.4 Hz, 1H), 2.06-1.90 (m, 1H), 1.77-1.64 (m, 1H), 1.60-1.48 (m, 3H), 1.47 (d, J = 6.3 Hz, 3H), 1.37-1.26 (m, 4H), 0.95-0.84 (m, 3H) 1 H NMR (CDCl ₃) δ 11.98 (s, 1H), 8.64 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 7.33-7.24 (m, 2H), 7.23-7.15 (m, 3H), 6.87 (d, J = 5.2 Hz, 1H), 5.07-4.94 (m, 2H), 4.11 (dd, J = 11.8, 7.0 Hz, 1H), 3.93 (s, 3H), 3.75 (dd, J = 11.0, 1.6 Hz, 1H), 3.70-3.58 (m, 2H), 3.29 (dd, J = 8.3, 6.4 Hz, 1H), 3.07 (app t, J = 9.0 Hz, 1H), 2.77 (ddd, J = 13.6, 10.8, 4.7 Hz, 1H), 2.57 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H), 10.9 (ddd, J = 13.7, 10.9, 6.6 Hz, 1H)	_
F5	139-142	_	HRMS-ESI (m/z)	1.98 (dddd, J = 13.7, 10.9, 6.6, 3.0 Hz, 1H), 1.89-1.65 (m, 2H), 1.58-1.43 (m, 4H), 0.90 (app d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.91 (s, 1H), 8.50 (d, J = 8.3 Hz, 1H),	_

Analytical Data					
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			[M + H] ⁺ calcd for C ₃₀ H ₃₅ N ₂ O ₈ , 551.2388; found 551.2388	8.01-7.92 (m, 2H), 7.89-7.82 (m, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.49 (dddd, J = 14.7, 8.1, 6.9, 1.5 Hz, 2H), 7.40 (dd, J = 8.2, 7.0 Hz, 1H), 7.30 (dd, J = 6.9, 1.2 Hz, 1H), 6.84 (d, J = 5.2 Hz, 1H), 5.20-5.02 (m, 3H), 4.04 (dd, J = 11.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.60 (d, J = 4.1 Hz, 2H), 3.43 (dd, J = 11.7, 7.1 Hz, 1H), 3.23 (dd, J = 14.2,	
F6	118-122	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₀ H ₃₄ F ₃ N ₂ O7, 591.2313; found	3.2 Hz, 1H), 2.79-2.64 (m, 2H), 2.36-2.23 (m, 1H), 1.43-1.37 (m, 3H), 1.29 (dd, J = 7.0, 3.6 Hz, 6H) ¹ H NMR (CDCl ₃) & 11.93 (s, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.15-8.07 (m, 1H), 7.93 (d, J = 5.2 Hz, 1H), 7.84 (dd, J = 7.6, 2.0 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.55-7.42 (m, 2H), 7.39 (dd, J = 8.2, 6.9 Hz,	_
			591.2315	1H), 7.32 (dd, J = 7.0, 1.3 Hz, 1H), 6.81 (d, J = 5.2 Hz, 1H), 5.05-4.93 (m, 2H), 4.06 (dd, J = 11.7, 7.5 Hz, 1H), 3.89 (s, 4H), 3.80-3.72 (m, 1H), 3.57 (dd, J = 13.5, 2.9 Hz, 1H), 3.50 (dd, J = 10.8, 5.5 Hz, 1H), 3.45-3.37 (m, 1H), 3.36-3.25 (m, 2H), 2.82-2.71 (m, 1H), 2.39-2.23 (m, 2H), 2.15-1.87 (m, 3H), 1.54 (d, J = 6.4 Hz, 3H)	
F7	116-120	_	HRMS-ESI (m/z) [M + H]* calcd for C ₃₁ H ₃₉ N ₂ O ₇ , 551.2752; found 551.2762	³¹¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.48 (d, J = 8.3 Hz, 1H), 8.19 (dd, J = 8.4, 1.4 Hz, 1H), 7.93 (d, J = 5.2 Hz, 1H), 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.55-7.43 (m, 2H), 7.39 (dd, J = 8.1, 6.9 Hz, 1H), 7.33 (dd, J = 7.0, 1.3 Hz, 1H), 6.82 (d, J = 5.2 Hz, 1H), 5.04-4.93 (m, 2H), 4.06 (dd, J = 11.7, 7.5 Hz, 1H), 3.90 (s, 3H), 3.87-3.78 (m, 1H), 3.78-3.63 (m, 2H), 3.56-3.37 (m, 2H), 3.73-3.23 (m, 2H), 2.73 (app t, J = 12.8 Hz, 3.73-3.23 (m, 2H), 2.73 (app t, J = 12.8 Hz, 3.79 (m, 2H), 2.79 (m, 2H), 2.	
				1H), 2.14-2.01 (m, 1H), 1.80-1.66 (m, 2H), 1.56 (d, J = 6.4 Hz, 3H), 1.51-1.33 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H)	
F8	94-98	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₃ H ₃₅ N ₂ O ₇ , 571.2439; found 571.2448	¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.50 (d, J = 8.4 Hz, 1H), 8.07 (dd, J = 8.4, 1.3 Hz, 1H), 7.92 (d, J = 5.2 Hz, 1H), 7.85-7.77 (m, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.54-7.40 (m, 2H), 7.35 (dd, J = 8.1, 7.0 Hz, 1H), 7.28 (dd, J = 7.0, 1.3 Hz, 1H), 7.17-7.10 (m, 2H), 7.06-6.99 (m, 2H), 6.80 (d, J = 5.2 Hz, 1H), 5.22-5.10 (m, 1H), 5.06 (app q, J = 7.9 Hz, 1H), 4.44 (app t, J = 9.0 Hz, 1H), 4.14-4.04 (m, 1H), 3.88 (s, 3H), 3.64-3.47 (m, 3H), 3.36 (dd, J = 11.7, 7.8 Hz, 1H), 2.69 (app t, J = 12.9 Hz, 1H), 2.38-2.24 (m, 4H),	
F9	78-85	_	HRMS-ESI (m/z)	1.44 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.45 (d, J = 8.4 Hz, 1H),	_

TABLE	2-continued

Analytical Data					
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			[M + H] ⁺ calcd for C ₃₁ H ₃₇ N ₂ O ₇ , 549.2595; found 549.2599	8.15-8.08 (m, 1H), 7.94 (d, J = 5.2 Hz, 1H), 7.84 (dd, J = 8.1, 1.5 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.56-7.44 (m, 2H), 7.56-7.44 (m, 2H), 7.44-7.37 (m, 1H), 7.34 (dd, J = 7.0, 1.4 Hz, 1H), 6.83 (d, J = 5.2 Hz, 1H), 5.05-4.90 (m, 2H), 4.29-4.19 (m, 1H), 4.09 (dd, J = 11.6, 7.2 Hz, 1H), 3.91 (s, 3H), 3.75 (dd, J = 13.6, 2.8 Hz, 1H), 3.57-3.43 (m, 2H), 3.43-3.36 (m, 1H), 3.25 (dd, J = 11.7, 7.9 Hz, 1H), 2.76 (app dd, J = 13.7, 12.0 Hz, 1H), 2.08-1.96 (m, 1H), 1.93-1.75 (m, 6H), 1.65-1.55 (m, 5H)	
F10	78-80	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₀ H ₃₇ N ₂ O ₇ , 537.2595; found 537.2594	¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.23-8.15 (m, 1H), 7.95 (d, J = 5.2 Hz, 1H), 7.88-7.80 (m, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.55-7.42 (m, 2H), 7.40 (dd, J = 8.1, 7.0 Hz, 1H), 7.33 (dd, J = 6.9, 1.3 Hz, 1H), 6.83 (d, J = 5.2 Hz, 1H), 5.06-4.93 (m, 2H), 4.06 (dd, J = 11.7, 7.5 Hz, 1H), 3.92 (s, 3H), 3.69 (dd, J = 13.7, 2.8 Hz, 1H), 3.60 (dd, J = 8.4, 6.6 Hz, 1H), 3.56-3.41 (m, 3H), 3.38-3.23 (m, 2H), 2.73 (dd, J = 13.7, 11.9 Hz, 1H), 2.11 (ddq, J = 14.6, 8.7, 2.6 Hz, 1H), 2.01 (p, J = 7.1, 6.7 Hz, 1H), 1.56 (d, J = 6.3 Hz, 3H), 1.05 (d, J = 2.3 Hz, 3H), 1.03 (d, J = 2.2 Hz, 3H), 1.03 (d, J = 2.2 Hz, 3H), 1.03 (d, J = 2.2 Hz,	
F11	97-99	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₈ H ₃₉ N ₂ O ₇ , 515.2752; found, 515.2766	3H) ¹ H NMR (CDCl ₃) δ 11.96 (s, 1H), 8.55 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 5.2 Hz, 1H), 7.14-7.04 (m, 4H), 6.84 (d, J = 5.2 Hz, 1H), 5.07-4.94 (m, 2H), 4.01 (dd, J = 11.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.67 (app dt, J = 8.6, 6.5 Hz, 1H), 3.60-3.49 (m, 2H), 3.49-3.38 (m, 2H), 3.19-3.07 (m, 2H), 2.34-2.23 (m, 4H), 2.00-1.87 (m, 1H), 1.67-1.55 (m, 2H), 1.51 (d, J = 6.3 Hz, 3H), 1.42-1.28 (m, 4H),	
F12	67-72		HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₇ H ₃₅ N ₂ O ₈ , 515.2388; found, 515.2400	0.96-0.85 (m, 3H) ¹ H NMR (CDCl ₃) & 11.93 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 5.2 Hz, 1H), 7.99 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 5.2 Hz, 1H), 5.09 (m, 2H), 4.97 (app t, J = 9.3 Hz, 1H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.92 (s, 3H), 3.66-3.58 (m, 1H), 3.58-3.48 (m, 2H), 2.69 (dd, J = 13.9, 3.6 Hz, 1H), 2.61 (app p, J = 7.0 Hz, 1H), 2.31 (s, 3H), 2.24 (dd, J = 13.9, 11.4 Hz, 1H), 2.13-2.04 (m, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0,	
F13	68-73	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for	1.6 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.91 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.16-7.07 (m, 2H),	_

	Analytical Data				
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			C ₂₆ H ₃₀ N ₂ O ₈ , 517.1981; found 517.2009	7.04-6.93 (m, 2H), 6.87 (d, J = 5.2 Hz, 1H), 5.17-5.01 (m, 2H), 4.97 (app t, J = 9.3 Hz, 1H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.66-3.47 (m, 3H), 2.74 (dd, J = 14.2, 3.9 Hz, 1H), 2.29 (app dd, J = 14.1, 11.1 Hz, 1H), 2.14-2.01 (m, 1H), 1.70-1.59 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.08-1.00 (m, 2H),	
F14	66-71	_	HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{26}H_{32}FN_2O_8$, 519.2137; found 519.2160	0.96-0.89 (m, 2H) ¹ H NMR (CDCl ₃) δ 11.91 (d, J = 0.6 Hz, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.15-7.06 (m, 2H), 7.03-6.93 (m, 2H), 6.87 (d, J = 5.2 Hz, 1H), 5.18-5.01 (m, 2H), 4.98 (app t, J = 9.2 Hz, 1H), 4.05 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.64-3.48 (m, 3H), 2.70 (dd, J = 14.1, 3.8 Hz, 1H), 2.61 (app p, J = 7.0 Hz, 1H), 2.29 (dd, J = 14.1,	
F15	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{27}H_{32}N_2O_8$, 512.2159; found 512.2158	11.4 Hz, 1H), 2.11-2.04 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0, 1.8 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.64 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 5.2 Hz, 1H), 7.31-7.25 (m, 2H), 7.22-7.16 (m, 1H), 7.16-7.12 (m, 2H), 6.88 (d, J = 5.2 Hz, 1H), 5.13-5.01 (m, 2H), 4.94 (t, J = 9.3 Hz, 1H), 4.15-4.08 (m, 1H), 3.95 (s, 3H), 3.86 (dd, J = 10.9, 1.5 Hz, 1H),	¹³ C NMR (CDCl ₃) δ 174.16, 170.80, 168.94, 155.36, 148.76, 141.69, 140.65, 130.20, 128.41, 128.32, 125.95, 109.59, 76.27, 74.83, 74.52, 73.04, 56.10, 51.91, 43.86, 32.49, 31.26, 18.30,
F16	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₄ N ₂ O ₇ , 534.2366; found, 534.2377	3.80-3.62 (m, 3H), 2.77-2.67 (m, 1H), 2.54-2.43 (m, 1H), 1.90-1.80 (m, 1H), 1.68-1.61 (m, 1H), 1.57-1.48 (m, 1H), 1.34 (d, J = 6.3 Hz, 3H), 1.04-0.98 (m, 2H), 0.94-0.87 (m, 2H) ¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.65 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 5.2 Hz, 1H), 7.25-7.18 (m, 2H), 7.18-7.11 (m, 1H), 7.10-7.05 (m, 2H), 7.04-6.99 (m, 2H), 6.88 (d, J = 5.2 Hz, 1H), 6.85-6.80 (m, 2H), 5.21-5.11 (m, 1H), 5.11-5.02 (m, 1H),	12.87, 8.58 13C NMR (CDCl ₃) δ 170.87, 168.96, 156.92, 155.36, 148.75, 141.68, 140.68, 130.55, 130.22, 130.15, 128.35, 128.31, 125.83, 115.27, 109.60, 81.88, 75.72,
F17	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{26}H_{30}F_{4}N_{2}O_{7}$, 558.1989; found, 558.2001	3.11-3.02 (m, 2H), 3.94 (s, 3H), 3.84-3.62 (m, 3H), 2.72-2.63 (m, 1H), 2.58-2.47 (m, 1H), 2.29 (s, 3H), 1.98-1.81 (m, 2H), 1.62-1.50 (m, 1H), 1.38 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 11.92 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.20-7.09 (m, 2H), 7.07-6.94 (m, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.06-4.92 (m, 2H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.94 (s, 3H), 3.80-3.70 (m, 1H), 3.68-3.57 (m, 1H), 3.51-3.40 (m, 3H), 3.18 (t, J = 8.9 Hz, 1H), 3.02 (dd, J = 13.7,	13C NMR (CDCl ₃) δ 171.04, 168.92, 161.47 (d, J = 244.4 Hz), 155.35, 148.73, 140.64, 135.10 (d, J = 3.1 Hz), 130.44 (d, J = 7.6 Hz), 130.15, 128.44, 115.33 (d, J = 21.2 Hz), 195.59, 85.08, 75.41, 72.29, 72.18, 70.70, 56.08,

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F18	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₃ FN ₂ O ₇ , 516.2272; found, 516.2280	¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.53 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.19-7.09 (m, 2H), 7.04-6.92 (m, 2H), 6.86 (d, J = 5.3 Hz, 1H), 5.08-4.97 (m, 1H), 4.93 (dt, J = 8.3, 7.2 Hz, 1H), 4.11-4.03 (m, 2H), 3.93 (s, 3H), 3.49-3.42 (m, 2H), 3.40-3.29 (m, 2H), 3.15 (dd, J = 13.8, 3.6 Hz, 1H), 2.34 (dd, J = 13.7, 12.2 Hz, 1H), 1.88-1.54 (m, 7H), 1.60-1.49 (m, 5H)	¹³ C NMR (CDCl ₃) δ 171.17, 168.89, 161.37 (d, J = 243.8 Hz), 155.33, 148.71, 140.61, 135.81 (d, J = 3.1 Hz), 130.45 (d, J = 7.9 Hz), 130.20, 115.24 (d, J = 21.2 Hz), 109.55, 83.58, 83.29, 76.27, 73.25, 72.52, 56.08, 51.77, 47.73, 34.34, 32.70, 32.62, 23.010, 23.006, 18.89
F19	_	_	HRMS-ESI (m/z) [M] $^+$ calcd for $C_{27}H_{35}FN_2O_7$, 518.2428; found, 518.2431	¹ H NMR (CDCl ₃) & 11.94 (s, 1H), 8.55 (d, J = 8.4 Hz, 1H), 8.02-7.95 (m, 1H), 7.18-7.11 (m, 2H), 7.03-6.94 (m, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.06-4.95 (m, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.93 (s, 3H), 3.72-3.61 (m, 1H), 3.59-3.39 (m, 4H), 3.19-3.07 (m, 2H), 2.33 (dd, J = 13.8, 11.8 Hz, 1H), 1.96-1.85 (m, 1H), 1.67-1.55 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H), 1.41-1.31 (m, 4H), 0.96-0.87 (m,	13°C MMR (CDCl ₃) δ 171.06, 168.91, 161.41 (d, J = 244.0 Hz), 155.33, 148.72, 140.63, 135.48 (d, J = 3.2 Hz), 130.50 (d, J = 7.8 Hz), 130.18, 115.24 (d, J = 21.2 Hz), 109.56, 84.92, 75.84, 72.98, 72.44, 72.33, 56.08, 51.55, 47.59, 34.38, 29.99, 28.34, 22.58, 18.75, 14.01
F20	_	_	_	3H) ¹ H NMR (CDCl ₃) δ 11.92 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.35-7.28 (m, 2H), 7.12-7.06 (m, 2H), 7.01-6.91 (m, 5H), 6.87 (d, J = 5.2 Hz, 1H), 5.25-5.14 (m, 1H), 5.13-4.99 (m, 1H), 4.33 (t, J = 8.9 Hz, 1H), 4.14-4.07 (m, 1H), 3.94 (s, 3H), 3.58 (d, J = 4.0 Hz, 2H), 3.49 (dd, J = 11.7, 7.3 Hz, 1H), 3.00 (dd, J = 13.8, 3.4 Hz, 1H), 2.33 (dd, J = 13.8, 11.6 Hz, 1H), 2.20-2.10 (m, 1H), 1.41 (d, J = 6.4 Hz,	¹³ C NMR (CDCl ₃) 8 171.12, 168.95, 161.44 (d, J = 244.2 Hz), 159.04, 155.37, 148.75, 140.67, 135.01, 130.48 (d, J = 7.9 Hz), 130.14, 129.79, 121.43, 115.41, 115.24 (d, J = 20.8 Hz), 109.61, 81.76, 75.60, 72.26, 71.98, 56.10, 51.49, 47.76, 34.54, 18.98
F21	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{26}H_{33}FN_2O_7$, 504.2272 ; found, 504.2273	3H) ¹ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.54 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.18-7.11 (m, 2H), 7.01-6.95 (m, 2H), 6.86 (d, J = 5.3 Hz, 1H), 5.08-4.91 (m, 2H), 4.04 (dd, J = 11.7, 7.3 Hz, 1H), 3.94 (s, 3H), 3.54-3.38 (m, 4H), 3.33 (dd, J = 8.3, 6.3 Hz, 1H), 3.19-3.06 (m, 2H), 2.33 (dd, J = 13.8, 11.8 Hz, 1H), 1.90 (dq, J = 13.3, 6.8 Hz, 2H), 1.51 (d, J = 6.3 Hz, 3H), 0.96 (d, J = 6.7 Hz, 6H)	¹³ C NMR (CDCl ₃) 8 171.08, 168.91, 161.42 (d, J = 244.3 Hz), 155.34, 148.72, 140.63, 135.50 (d, J = 3.1 Hz), 130.51 (d, J = 8.0 Hz), 130.19, 115.24 (d, J = 21.0 Hz), 109.56, 84.58, 79.44, 77.21, 75.84, 72.29, 56.09, 51.53, 47.68, 34.29, 29.19, 19.48, 18.80
F22	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{27}H_{32}N_2O_8$, 512.2159; found, 512.2157	0.96 (d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) & 11.92 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.13-7.08 (m, 2H), 7.08-7.01 (m, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.15-5.02 (m, 2H), 4.97 (t, J = 9.3 Hz, 1H), 4.01 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.68-3.62 (m, 1H), 3.58-3.48 (m, 2H), 2.74 (dd, J = 13.9, 3.7 Hz, 1H), 2.31 (s, 3H), 2.28-2.19 (m, 1H), 2.16-2.05 (m, 1H), 1.69-1.60 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.07-1.01 (m, 2H), 0.96-0.89 (m, 2H)	13C NMR (CDCl ₃) 8 174.28, 171.02, 168.89, 155.35, 148.74, 140.62, 135.85, 135.82, 130.16, 129.22, 128.90, 109.57, 76.93, 74.43, 73.00, 72.54, 56.09, 51.71, 45.83, 34.51, 21.02, 18.26, 12.87, 8.67, 8.65

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F23	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₃ F ₃ N ₂ O ₇ , 554.2240; found, 554.2250	¹ H NMR (CDCl ₃) δ 11.93 (s, 1H), 8.53 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.09 (q, J = 8.1 Hz, 4H), 6.86 (d, J = 5.2 Hz, 1H), 5.05-4.95 (m, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.93 (s, 3H), 3.80-3.69 (m, 1H), 3.68-3.56 (m, 1H), 3.55-3.49 (m, 1H), 3.49-3.40 (m, 2H), 3.18 (t, J = 8.9 Hz, 1H), 3.02 (dd, J = 13.6, 3.6 Hz, 1H), 2.39-2.28 (m, 4H), 2.27-2.16 (m, 2H), 2.01-1.90 (m, 1H), 1.89-1.80 (m, 2H), 1.49 (d, J = 6.4 Hz, 2H), 2.31	¹³ C NMR (CDCl ₃) δ 171.11, 168.90, 155.33, 148.72, 140.63, 136.33, 135.77, 130.17, 129.21, 128.94, 127.09 (q, J = 276.1 Hz), 109.57, 85.10, 75.50, 72.45, 72.18, 70.55, 56.08, 51.49, 47.23, 34.78, 30.76 (q, J = 29.0 Hz), 22.99 (q, J = 3.1 Hz), 21.01, 18.79
F24	_	_	HRMS-ESI (m/z) [M] ⁺ caled for C ₂₉ H ₃₂ N ₂ O ₇ , 520.2226; found, 520.2210	3H) ¹ H NMR (CDCl ₃) & 11.93 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.34-7.27 (m, 2H), 7.11-6.93 (m, 7H), 6.86 (d, J = 5.2 Hz, 1H), 5.25-5.14 (m, 1H), 5.05 (q, J = 7.6 Hz, 1H), 4.33 (t, J = 8.9 Hz, 1H), 4.08 (dd, J = 11.7, 7.3 Hz, 1H), 3.93 (s, 3H), 3.79-3.56 (m, 2H), 3.47 (dd, J = 11.7, 7.3 Hz, 1H), 3.01 (dd, J = 13.4, 3.0 Hz, 1H), 2.29 (m, 4H), 2.23-2.11 (m, 1H), 1.41 (d, J = 6.4 Hz, 3H)	13C NMR (CDCl ₃) 8 171.17, 168.92, 159.15, 155.35, 148.74, 140.65, 136.21, 135.68, 130.16, 129.74, 129.13, 128.98, 121.33, 115.48, 109.59, 81.89, 75.69, 72.16, 56.09, 51.49, 47.59, 34.82, 21.02, 19.01
F25	_	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{28}H_{36}N_2O_7$, 512.2523 ; found, 512.2529	¹ H NMR (CDCl ₃) δ 11.96 (s, 1H), 8.52 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.14-7.04 (m, 4H), 6.85 (d, J = 5.2 Hz, 1H), 5.02 (dq, J = 8.8, 6.5 Hz, 1H), 4.97-4.88 (m, 1H), 4.11-4.01 (m, 2H), 3.93 (s, 3H), 3.51-3.43 (m, 2H), 3.38-3.29 (m, 2H), 3.16 (dd, J = 13.7, 3.6 Hz, 1H), 2.33-2.25 (m, 4H), 1.92-1.62 (m,	13C NMR (CDCl ₃) δ 171.23, 168.87, 155.32, 148.71, 140.59, 137.07, 135.53, 130.22, 129.16, 128.97, 109.53, 83.56, 83.37, 76.34, 73.51, 72.38, 56.07, 51.77, 47.49, 34.63, 32.71, 32.62, 23.03, 23.00, 21.02,
F26	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₂₉ F ₃ N ₂ O ₈ , 566.1876; found, 566.1897	7H), 1.61-1.49 (m, 5H) ¹H NMR (CDCl ₃) & 11.90 (s, 1H), 8.58 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 7.3 Hz, 2H), 6.87 (d, J = 5.2 Hz, 1H), 5.18-4.96 (m, 3H), 4.05 (dd, J = 11.8, 7.2 Hz, 1H), 3.94 (s, 3H), 3.67-3.50 (m, 3H), 2.82 (dd, J = 14.2, 4.3 Hz, 1H), 2.43 (dd, J = 14.2, 10.9 Hz, 1H), 2.22-2.06 (m, 1H), 1.66-1.55 (m, 1H), 1.37 (d, J = 6.3 Hz, 3H), 1.08-0.99 (m, 2H),	18.90 13°C NMR (CDCl ₃) δ 174.25, 170.94, 168.92, 155.35, 148.74, 143.29, 140.65, 130.10, 129.31, 128.71 (q, J = 32.3 Hz), 125.45 (q, J = 3.8 Hz), 124.20 (q, J = 271.8 Hz), 109.61, 76.81, 74.26, 72.82, 72.62, 56.08, 51.66, 45.64, 35.09, 18.19, 12.77, 8.80, 8.71
F27	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₃ F ₃ N ₂ O ₇ , 554.224; found, 554.2258	0.96-0.88 (m, 2H) ¹ H NMR (CDCl ₃) δ 11.93 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.08-4.95 (m, 2H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.52-3.40 (m, 4H), 3.34 (dd, J = 8.3, 6.4 Hz, 1H), 3.25-3.11 (m, 2H), 2.50-2.37 (m, 1H), 2.02-1.93 (m, 1H), 1.93-1.82 (m, 1H), 1.51 (d, J = 6.3 Hz, 3H),	¹³ C NMR (CDCl ₃) δ 171.04, 168.93, 155.34, 148.72, 144.20, 140.64, 130.16, 129.45, 128.52 (q, J = 32.5 Hz), 125.39 (q, J = 3.8 Hz), 124.28 (q, J = 271.6 Hz), 109.58, 84.58, 79.56, 75.80, 72.34, 72.26, 56.08, 51.52, 47.48, 34.99, 29.18, 19.46, 18.80
F28	_	_	HRMS-ESI (m/z) [M] ⁺	0.96 (d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) 8 11.94 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H),	¹³ C NMR (CDCl ₃) δ 171.13, 168.92, 155.33, 148.71,

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			calcd for $C_{28}H_{33}F_{3}N_{2}O_{7}$, 566.2240; found, 566.2241	7.55 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.09-4.98 (m, 1H), 4.94 (q, J = 7.4 Hz, 1H), 4.16-4.04 (m, 2H), 3.93 (s, 3H), 3.50-3.31 (m, 4H), 3.23 (dd, J = 13.7, 3.5 Hz, 1H), 2.45 (dd, J = 13.7, 12.2 Hz, 1H), 1.96-1.66 (m, 7H), 1.63-1.55 (m, 2H), 1.53 (d, J = 6.5 Hz, 2H)	144.53, 140.63, 130.16, 129.40, 128.45 (q, J = 32.1 Hz), 125.38 (q, J = 3.8 Hz), 124.29 (q, J = 271.9 Hz), 109.58, 83.64, 83.25, 76.23, 73.16, 72.59, 56.07, 51.77, 47.48, 35.04, 32.70, 32.62, 23.00,
F29	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₆ H ₃₁ F ₃ N ₂ O ₇ , 540.2083; found, 540.2101	3H) ¹H NMR (CDCl ₃) δ 11.93 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.58-7.49 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.07-4.95 (m, 2H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.66 (dt, J = 8.6, 6.6 Hz, 1H), 3.57-3.39 (m, 4H), 3.23-3.13 (m, 2H), 2.43 (dd, J = 13.7, 11.7 Hz, 1H), 2.03-1.91 (m, 1H), 1.70-1.59 (m, 2H), 1.52 (d, J = 6.4 Hz, 3H), 0.97 (t, J = 7.4 Hz,	18.89 ¹⁹ F NMR (CDCl ₃) δ -62.35
F30		_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{24}H_{34}F_{3}N_{2}O_{8}$, 568.2033; found, 568.2060	3H) ¹ H NMR (CDCl ₃) & 11.90 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 5.2 Hz, 1H), 5.19-4.96 (m, 3H), 4.06 (dd, J = 11.8, 7.2 Hz, 1H), 3.94 (s, 3H), 3.58-3.49 (m, 3H), 2.77 (dd, J = 14.0, 3.9 Hz, 1H), 2.59 (hept, J = 7.0 Hz, 1H), 2.41 (dd, J = 14.1, 11.4 Hz, 1H), 2.19-2.07 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0,	¹⁹ F NMR (CDCl ₃) δ -62.43
F31	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₈ H ₃₈ F ₃ N ₂ O ₇ , 568.2396; found, 568.2425	2.9 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.93 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.62-7.52 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.06-4.96 (m, 2H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.73-3.65 (m, 1H), 3.59-3.51 (m, 1H), 3.51-3.39 (m, 3H), 3.23-3.13 (m, 2H), 2.43 (dd, J = 13.7, 11.7 Hz, 1H), 2.03-1.90 (m, 1H), 1.67-1.56 (m, 2H), 1.52 (d, J = 6.4 Hz, 3H), 1.41-1.29 (m, 4H),	¹⁹ F NMR (CDCl ₃) δ -62.34
F32	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₁ H ₂₉ F ₃ N ₂ O ₇ , 478.1927; found, 478.1923	0.94-0.87 (m, 3H) ¹ H NMR (CDCl ₃) δ 11.91 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 6.88 (d, J = 5.2 Hz, 1H), 5.09-4.91 (m, 2H), 4.13 (dd, J = 11.8, 7.3 Hz, 1H), 3.94 (s, 3H), 3.75-3.65 (m, 2H), 3.53 (dd, J = 11.8, 7.5 Hz, 1H), 3.42 (dd, J = 8.4, 6.4 Hz, 1H), 3.21 (dd, J = 8.4, 6.4 Hz, 1H), 3.12 (t, J = 8.8 Hz, 1H), 2.51-2.33 (m, 1H), 2.25-2.11 (m, 1H), 2.11-2.00 (m, 1H), 1.92-1.77 (m, 1H), 1.49 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.7 Hz,	¹³ C NMR (CDCl ₃) δ 171.00, 168.95, 155.36, 148.74, 140.67, 130.15, 127.00 (q, J = 277.3 Hz), 109.61, 83.19, 78.88, 75.68, 72.80, 72.22, 56.10, 51.39, 40.00, 32.61 (q, J = 28.3 Hz) 29.05, 19.30, 18.86
F33	_	_	HRMS-ESI (m/z)	6H) ¹ H NMR (CDCl ₃) δ 11.92 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H),	$^{19}\text{F NMR (CDCl}_3)$ δ –63.68

	Analytical Data					
Ompd No.	MP (° C.)	$IR \ (cm^{-1})$	Mass	¹H NMR	¹³ C or ¹⁹ F NMR	
			$\begin{array}{l} [\mathrm{M}]^+ \\ \mathrm{calcd\ for} \\ \mathrm{C}_{22}\mathrm{H}_{29}\mathrm{F}_3\mathrm{N}_2\mathrm{O}_7, \\ 490.1927; \\ \mathrm{found}, \\ 490.1929 \end{array}$	8.00 (d, J = 5.2 Hz, 1H), 6.88 (d, J = 5.2 Hz, 1H), 5.04 (dq, J = 8.2, 6.5 Hz, 1H), 4.93 (td, J = 8.1, 6.7 Hz, 1H), 4.18 (dd, J = 11.7, 6.7 Hz, 1H), 4.04-3.90 (m, 4H), 3.69 (qd, J = 11.8, 4.2 Hz, 2H), 3.47 (dd, J = 11.7, 8.0 Hz, 1H), 3.28 (t, J = 7.8 Hz, 1H), 2.60-2.41 (m, 1H), 2.22-2.08 (m, 1H),		
34	_	_	HRMS-ESI (m/z) [M]* caled for C ₂₄ H ₃₈ N ₂ O ₇ , 466.2679; found, 466.2685	2.03-1.90 (m, 1H), 1.83-1.65 (m, 5H), 1.65-1.53 (m, 3H), 1.49 (d, J = 6.5 Hz, 3H) ¹ H NMR (CDCl ₃) & 11.97 (s, 1H), 8.63 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 5.08-4.93 (m, 2H), 4.06 (dd, J = 11.8, 7.0 Hz, 1H), 3.94 (s, 3H), 3.72-3.62 (m, 2H), 3.52 (dd, J = 10.8, 6.4 Hz, 1H), 3.35 (dd, J = 8.3, 6.4 Hz, 1H), 3.27 (dd, J = 8.3, 6.3 Hz, 1H), 3.03 (t, J = 9.1 Hz, 1H), 1.84 (hept, J = 6.6 Hz, 1H), 1.73-1.57 (m, 2H), 1.57-1.49 (m, 1H), 1.46 (d, J = 6.4 Hz, 3H),	¹³ C NMR (CDCl ₃) δ 170.88, 168.91, 155.30, 148.70, 140.62, 130.25, 109.54, 84.49, 78.95, 75.98, 75.35, 72.89, 56.07, 51.93, 45.81, 36.05, 29.13, 28.38, 26.71, 22.76, 22.42, 19.48, 18.89	
35	_	_	HRMS-ESI (m/z) [M] $^{+}$ calcd for $C_{24}H_{35}F_{3}N_{2}O_{7}$, 520.2396; found, 520.2407	1H), 1.49 (d, J = 0.4 Hz, 3H), 1.36-1.22 (m, 1H), 1.21-1.08 (m, 2H), 0.93 (d, J = 6.7 Hz, 6H), 0.89 (app dd, J = 6.6, 3.5 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.62 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 5.10-4.90 (m, 2H), 4.07 (dd, J = 11.8, 7.1 Hz, 1H), 3.94 (s, 3H), 3.70-3.60 (m, 3H), 3.60-3.49 (m, 2H), 3.07 (t, J = 8.9 Hz,	¹³ C NMR (CDCl ₃) δ 170.88, 168.93, 155.33, 148.72, 140.65, 130.21, 127.12 (q J = 276.0 Hz), 109.56, 84.96, 75.58, 74.93, 72.81, 70.28, 56.08, 51.84,	
				1H), 2.29-2.12 (m, 2H), 1.89-1.77 (m, 2H), 1.68-1.48 (m, 3H), 1.46 (d, J = 6.4 Hz, 3H), 1.36-1.24 (m, 1H), 1.23-1.08 (m, 2H), 0.92-0.86 (m, 6H)	45.71, 35.99, 30.77 (q, J = 29.0 Hz), 28.33, 26.85 22.96 (q, J = 3.1 Hz), 22.74, 22.33, 18.90	
86	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₄ H ₃₄ N ₂ O ₈ , 478.2315; found, 478.2324	¹ H NMR (CDCl ₃) & 11.94 (s, 1H), 8.65 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 5.1 Hz, 1H), 6.88 (d, J = 5.3 Hz, 1H), 5.12-5.01 (m, 2H), 4.88 (t, J = 9.4 Hz, 1H), 4.07 (dd, J = 11.8, 7.0 Hz, 1H), 3.94 (s, 3H), 3.81-3.70 (m, 2H), 3.59 (dd, J = 10.8, 7.1 Hz, 1H), 1.69-1.60 (m, 1H), 1.52-1.41 (m, 1H), 1.37-1.31 (m, 4H), 1.29-0.99 (m, 5H), 0.95-0.89 (m, 2H),	13C NMR (CDCl ₃) 8 174.11, 170.79, 168.92, 155.33, 148.73, 140.63, 130.19, 109.57, 76.49, 75.39, 74.56, 73.14, 56.08, 52.02, 44.50, 35.31, 28.19, 26.98, 22.69, 22.17, 18.31, 12.83, 8.41	
37	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₆ N ₂ O ₇ , 500.2523; found, 500.2521	0.89-0.82 (m, 6H) ¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.65 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 5.1 Hz, 1H), 7.14-7.03 (m, 2H), 6.87 (d, J = 5.2 Hz, 1H), 6.85-6.77 (m, 2H), 5.15 (dt, J = 8.9, 6.4 Hz, 1H), 5.06 (dt, J = 8.3, 6.8 Hz, 1H), 4.21-4.06 (m, 2H), 3.94 (s, 3H), 3.79-3.59 (m, 3H), 2.29 (s, 3H), 1.87-1.77 (m, 1H), 1.63-1.49 (m, 1H), 1.37 (d, J = 6.4 Hz, 4H), 1.22-1.07 (m, 3H), 0.79 (d, J = 6.6 Hz, 3H), 0.75 (d, J = 6.5 Hz, 3H)	13C NMR (CDCl ₃) δ 170.90, 168.95, 157.07, 155.34, 148.73, 140.66, 130.38, 130.22, 130.06, 115.23, 109.58, 82.05, 75.82, 74.82, 72.86, 56.09, 51.87, 45.99, 35.93, 28.04, 27.00, 22.79, 22.13, 20.44, 19.09	

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F38	-	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₃ H ₃₆ N ₂ O ₇ , 452.2523; found, 452.2516	¹ H NMR (CDCl ₃) δ 11.97 (s, 1H), 8.64 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 5.08-4.91 (m, 2H), 4.06 (dd, J = 11.8, 7.0 Hz, 1H), 3.94 (s, 3H), 3.73-3.63 (m, 2H), 3.59-3.41 (m, 3H), 3.04 (t, J = 9.1 Hz, 1H), 1.71-1.50 (m, 5H), 1.47 (d, J = 6.4 Hz, 3H), 1.34-1.24 (m, 1H), 1.23-1.09 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H), 0.89 (app dd, J = 6.6, 4.0 Hz,	13C NMR (CDCl ₃) 8 170.88, 168.91, 155.30, 148.69, 140.63, 130.23, 109.54, 84.76, 75.99, 75.32, 74.08, 72.88, 56.07, 51.91, 45.79, 36.01, 28.35, 26.79, 23.43, 22.78, 22.37, 18.85, 10.70
F39	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₅ H ₃₈ N ₂ O ₇ , 478.2679; found, 478.2686	6H) ¹H NMR (CDCl ₃) δ 11.98 (d, J = 0.6 Hz, 1H), 8.63 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.87 (dd, J = 5.3, 0.6 Hz, 1H), 5.07-4.90 (m, 2H), 4.16-4.04 (m, 1H), 4.02-3.96 (m, 1H), 3.94 (s, 3H), 3.69-3.59 (m, 2H), 3.55 (dd, J = 11.4, 6.3 Hz, 1H), 3.19 (t, J = 8.5 Hz, 1H), 1.79-1.60 (m, 1.59-1.50 (m, 4H), 1.47 (d, J = 6.4 Hz, 3H), 1.36-1.27 (m, 1H), 1.20-1.04 (m, 2H), 0.89 (app dd, J = 6.6, 4.4 Hz, 6H)	13C NMR (CDCl ₃) 8 170.91, 168.90, 155.30, 148.69, 140.60, 130.27, 109.52, 83.55, 83.23, 76.61, 76.32, 73.36, 56.06, 52.25, 46.20, 36.70, 32.59, 32.53, 28.43, 26.81, 23.06, 23.02, 22.73, 22.49, 18.94
F40	_	_	HRMS-ESI (m/z) [M] $^+$ calcd for $C_{26}H_{31}F_3N_2O_7$, 540.2083; found, 540.2091	6H) ¹ H NMR (CDCl ₃) δ 11.92 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.90-6.77 (m, 3H), 5.08-4.93 (m, 2H), 4.06 (dd, J = 11.8, 7.2 Hz, 1H), 3.94 (s, 3H), 3.52-3.41 (m 4H) 3.30 (dd J = 8.4, 6.3 Hz, 1H), 3.94 (s, 3H), 3.17-3.00 (m, 2H), 2.33 (dd, J = 13.8, 11.8 Hz, 1H), 1.94-1.80 (m, 2H), 1.50 (d, J = 6.4 Hz, 3H), 0.96 (app dd, J = 6.7, 1.4 Hz, (M)	¹⁹ F NMR (CDCl ₃) δ -134.7 (dd, J = 20.4, 8.1 Hz), -163.8164.1 (m)
F41	79-82	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₆ H ₃₀ Cl ₂ N ₂ O ₈ , 568.1379; found, 568.1385	6H) ¹H NMR (CDCl ₃) δ 11.91 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.36 (s, 1H), 7.20-7.13 (m, 2H), 6.87 (d, J = 5.2 Hz, 1H), 5.18-4.96 (m, 3H), 4.10 (dd, J = 11.7, 7.3 Hz, 1H), 3.94 (s, 3H), 3.59-3.43 (m, 3H), 2.81 (dd, J = 13.9, 3.6 Hz, 1H), 2.62 (p, J = 7.0 Hz, 1H), 2.60-2.56 (m, 1H), 2.16 (bs, 1H), 1.36 (d, J = 6.3 Hz, 3H), 1.33 (d, J = 7.0 Hz, 6H)	13C NMR (CDCl ₃) 8 176.29, 171.06, 168.93, 155.36, 148.75, 140.64, 135.15, 134.89, 132.98, 132.37, 130.10, 129.51, 127.14, 109.61, 76.52, 74.17, 72.27, 71.61, 56.09, 51.46, 43.98, 34.22, 32.31, 19.04, 18.97, 18.16.
F42	60-64	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₆ H ₃₂ Cl ₂ N ₂ O ₇ , 554.1585; found, 554.1584	1.23 (d, J = 7.0 Hz, 6H) ¹ H NMR (CDCl ₃) & 11.94 (s, 1H), 8.56 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.36 (s, 1H), 7.26-7.10 (m, 2H), 6.86 (d, J = 5.3 Hz, 1H), 5.09-4.95 (m, 2H), 4.06 (dd, J = 11.7, 7.2 Hz, 1H), 3.93 (s, 3H), 3.51-3.40 (m, 4H), 3.36 (dd, J = 8.3, 6.5 Hz, 1H), 3.23-3.08 (m, 2H), 2.62-2.46 (m, 1H), 2.10-1.98 (m, 1H), 1.88 (dq, J = 13.2, 6.6 Hz, 1H), 1.51 (d, J = 6.4 Hz, 3H), 0.05 (dd, J = 7.5 Hz, June 1.75 Hz, June 1.7	13C NMR (CDCl ₃) 8 171.01, 168.91, 155.32, 148.71, 140.63, 136.12, 135.03, 132.57, 132.13, 130.15, 129.35, 127.09, 109.57, 84.92, 79.81, 75.84, 72.36, 60.38, 56.07, 51.57, 45.89, 32.10, 29.16, 19.48, 18.75
F43	50-54	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₄ Cl ₂ N ₂ O ₇ 568.1743;	0.95 (d, J = 7.5 Hz, 6H) ¹ H NMR (CDCl ₃) & 11.94 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 5.2 Hz, 1H), 7.36 (s, 1H), 7.24-7.11 (m, 2H), 6.86 (d, J = 5.2 Hz, 1H), 5.09-4.92 (m, 2H), 4.06 (dd, J = 11.7,	¹³ C NMR (CDCl ₃) δ 171.03, 168.92, 155.33, 148.71, 140.64, 136.10, 135.03, 132.59, 132.11, 130.16,

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			found, 568.1763	7.2 Hz, 1H), 3.93 (s, 3H), 3.74-3.63 (m, 1H), 3.57 (q, J = 8.4, 7.5 Hz, 1H), 3.50-3.37 (m, 3H), 3.24-3.08 (m, 2H), 2.62-2.48 (m, 1H), 2.07-1.98 (m, 1H), 1.64-1.55 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H), 1.39-1.28 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H)	109.57, 85.20, 75.84, 73.35, 72.34, 72.19, 56.08, 51.54, 45.87, 32.17, 29.97, 28.33, 22.58, 18.72, 14.02
F44	81-85	_	$\begin{array}{l} HRMS\text{-}ESI \\ (m/z) \\ [M]^+ \\ \text{calcd for} \\ C_{29}H_{30}Cl_2N_2O_7, \\ 588.1430; \\ \text{found,} \\ 588.1425 \end{array}$	¹ H NMR (CDCl ₃) & 11.94 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.32 (s, 1H), 7.15 (s, 2H), 7.10 (d, J = 8.3 Hz, 2H), 6.91-6.83 (m, 3H), 5.26-5.13 (m, 1H), 5.06 (q, J = 7.5 Hz, 1H), 4.31 (t, J = 8.8 Hz, 1H), 4.20-4.04 (m, 1H), 3.92 (s, 3H), 3.65-3.37 (m, 3H), 3.05 (dd, J = 13.7, 3.5 Hz, 1H), 2.61-2.45 (m, 1H), 2.29 (s, 3H), 2.28-2.21 (m, 1H), 1.42 (d, J = 6.5 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 171.12, 168.97, 156.95, 155.35, 148.74, 140.67, 135.75, 134.96, 132.70, 132.22, 130.69, 130.20, 129.38, 127.05, 115.16, 109.63, 81.93, 77.32, 75.60, 72.16, 71.59, 56.09, 51.45, 46.08, 32.40, 20.45, 18.93
F45	55-59	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₅ H ₃₆ N ₂ O ₈ , 492.2472; found, 492.2488	³ H NMR (CDCl ₃) δ 11.94 (s, 1H), 8.61 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 5.2 Hz, 1H), 6.88 (d, J = 5.1 Hz, 1H), 5.11-5.01 (m, 2H), 4.81 (t, J = 9.2 Hz, 1H), 4.10 (dd, J = 11.8, 7.2 Hz, 1H), 3.94 (s, 3H), 3.77-3.59 (m, 3H), 2.59 (hept, J = 7.0 Hz, 1H), 1.90-0.95 (m, 12H), 1.32 (d, J = 6.4 Hz, 3H), 1.20 (d, J = 7.0 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 176.19, 171.00, 168.92, 155.35, 148.75, 140.63, 130.19, 109.58, 74.52, 74.16, 72.60, 56.09, 51.75, 43.55, 37.20, 35.00, 34.26, 33.62, 32.13, 25.02, 19.03, 18.32
F46	132-134	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{25}H_{38}N_2O_7$, 478.2679 ; found, 478.2673	¹ H NMR (CDCl ₃) & 11.97 (s, 1H), 8.61 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 5.11-4.85 (m, 2H), 4.09 (dd, J = 11.7, 7.1 Hz, 1H), 3.94 (s, 3H), 3.71-3.47 (m, 3H), 3.37 (dd, J = 8.3, 6.3 Hz, 1H), 3.25 (dd, J = 8.2, 6.7 Hz, 1H), 2.98 (t, J = 8.9 Hz, 1H), 1.95-1.49 (m, 10H), 1.46 (d, J = 6.4 Hz, 3H), 1.31-1.21 (m, 1H), 1.15-1.05 (m, 2H), 0.92 (dd, J = 6.7,	¹³ C NMR (CDCl ₃) δ 171.04, 168.91, 155.31, 148.70, 140.61, 130.25, 109.54, 84.92, 79.14, 76.03, 74.47, 72.53, 56.06, 51.75, 44.72, 37.39, 34.94, 33.86, 32.01, 29.13, 25.05, 19.51, 18.83
F47	109-111	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₆ H ₄₀ N ₂ O ₇ , 492.2836; found, 492.2840	4.3 Hz, 6H) ¹ H NMR (CDCl ₃) δ 11.97 (s, 1H), 8.61 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 5.09-4.85 (m, 2H), 4.08 (dd, J = 11.7, 7.1 Hz, 1H), 3.94 (s, 3H), 3.74-3.35 (m, 5H), 2.99 (t, J = 9.0 Hz, 1H), 1.96-1.83 (m, 1H), 1.83-1.71 (m, 2H), 1.72-1.48 (m, 8H), 1.47 (d, J = 6.4 Hz, 3H), 1.38-1.22 (m, 5H), 1.17-1.02 (m, 2H),	¹³ C NMR (CDCl ₃) δ 171.05, 168.91, 155.32, 148.71, 140.62, 130.25, 109.54, 85.26, 76.03, 74.51, 72.55, 56.07, 51.75, 44.71, 37.40, 35.09, 33.85, 32.05, 29.95, 28.37, 25.10, 22.56, 18.80, 14.00
F48	_	_	HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{27}H_{37}N_2O_7$, 501.2595; found, 501.2602	0.94-0.86 (m, 3H) ¹ H NMR (CDCl ₃) δ 11.95 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 5.2 Hz, 1H), 7.09 (d, J = 2.1 Hz, 4H), 6.85 (d, J = 5.2 Hz, 1H), 5.01 (m, 2H), 3.92 (s, 3H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.49 (d, J = 7.7 Hz, 1H), 3.44 (m, 3H), 3.34 (dd, J = 8.3, 6.5 Hz, 1H), 3.13 (m, 2H), 2.31 (s, 4H), 1.89 (dt, J = 13.2, 6.6 Hz, 2H), 1.50 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.7 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 171.15, 168.90, 155.31, 148.71, 140.62, 136.76, 135.58, 130.20, 129.15, 129.05, 109.56, 84.61, 79.28, 75.92, 72.53, 72.16, 56.08, 51.53, 47.47, 34.60, 29.20, 21.03, 19.50, 18.83

	Analytical Data						
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR		
F49	59-64	_	HRMS-ESI (m/z) [M + H] ⁺ caled for C ₂₉ H ₃₆ F ₃ N ₂ O ₈ , 597.2418, found, 597.2446	¹ H NMR (CDCl ₃) δ 8.65 (d, J = 8.7 Hz, 1H), 8.34 (d, J = 5.4 Hz, 1H), 7.33-7.24 (m, 2H), 7.24-7.13 (m, 3H), 7.01 (d, J = 5.4 Hz, 1H), 5.07-4.88 (m, 2H), 4.08 (dd, J = 11.7, 7.1 Hz, 1H), 3.90 (s, 3H), 3.71 (dd, J = 10.9, 1.7 Hz, 1H), 3.67-3.42 (m, 4H), 3.08 (app t, J = 8.9 Hz, 1H), 2.78 (ddd, J = 14.5, 10.3, 4.8 Hz, 1H), 2.55 (ddd, J = 13.7, 9.9, 6.8 Hz, 1H), 2.39 (s, 3H), 2.32 (s, 6.7) (m, 2H), 10.3 (m, 1H), 2.39 (s, 3H), 3.31 (m, 1H), 3.42 (m, 4H), 3.43 (m, 1H), 3.44 (m, 2.18)	_		
F50	61-65	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for $C_{29}H_{39}N_2O_8$, 543.2701, found, 543.2714	2.23-2.05 (m, 2H), 1.93-1.82 (m, 1H), 1.81-1.74 (m, 2H), 1.73-1.65 (m, 1H), 1.60-1.45 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) & 8.66 (d, J = 7.9 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.33-7.23 (m, 2H), 7.23-7.14 (m, 3H), 7.00 (d, J = 5.4 Hz, 1H), 5.08-4.91 (m, 2H), 4.07 (dd, J = 11.7, 7.1 Hz, 1H), 3.89 (s, 3H), 3.73 (dd, J = 11.0, 1.6 Hz, 1H), 3.35-3.18 (m, 2H), 3.06 (app t, J = 9.0 Hz, 1H), 2.76 (ddd, J = 13.7, 10.9, 4.7 Hz, 1H), 2.56 (dddd, J = 13.7, 10.9, 4.7 Hz, 1H), 2.39 (s, 3H), 1.96 (dddd, J = 13.7, 10.9, 6.6, 3.0 Hz,			
F51	104-108	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₂ H ₃₇ N ₂ O ₉ , 593.2494; found, 593.2502	1H), 1.88-1.65 (m, 2H), 1.56-1.41 (m, 4H), 0.89 (app dd, J = 6.7, 0.7 Hz, 6H) 'H NMR (CDCl ₃) & 8.53 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 8.01-7.94 (m, 1H), 7.88-7.81 (m, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.55-7.43 (m, 2H), 7.39 (dd, J = 8.2, 7.0 Hz, 1H), 7.29 (dd, J = 7.0, 1.2 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.18-5.02 (m, 3H), 4.00 (dd, J = 11.7, 7.4 Hz, 1H), 3.86 (s, 3H), 3.58 (d, J = 4.2 Hz, 2H), 3.37 (dd, J = 11.7, 7.2 Hz, 1H), 3.22 (dd, J = 14.1, 3.1 Hz, 1H), 2.76-2.63 (m, 2H), 2.38 (s, 3H), 2.34-2.22 (m, 1H), 1.38 (d, J = 5.7 Hz, 3H),			
F52	85-91	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₃ H ₄₁ N ₂ O ₈ , 593.2857; found, 593.2867	1.28 (app dd, J = 7.0, 3.7 Hz, 6H) ¹ H NMR (CDCl ₃) δ 8.51 (d, J = 8.5 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 8.19 (dd, J = 8.6, 1.4 Hz, 1H), 7.87-7.80 (m, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.55-7.42 (m, 2H), 7.39 (dd, J = 8.1, 7.0 Hz, 1H), 7.32 (dd, J = 6.9, 1.3 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.06-4.88 (m, 2H), 4.03 (dd, J = 11.7, 7.6 Hz, 1H), 3.91-3.77 (m, 4H), 3.77-3.62 (m, 2H), 3.57-3.38 (m, 2H), 3.32-3.20 (m, 2H), 2.76-2.65 (m, 1H), 2.38 (s, 3H), 2.11-2.04 (m, 1H), 1.79-1.67 (m, 2H), 1.54 (d, J = 6.4 Hz, 3H), 1.51-1.32 (m, 2H), 2.54 (m, 2H), 3.57-3.38 (m, 2H), 3.57-3.69 (m, 2H), 3.57-3.38 (m, 2H), 3.32-3.20 (m, 2H), 2.76-2.65 (m, 1H), 2.38 (s, 3H), 2.11-2.04 (m, 1H), 1.79-1.67 (m, 2H), 1.54 (d, J = 6.4 Hz, 3H), 1.51-1.32 (m, 2H), 2.51-1.32			
F53	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for	4H), 0.92 (t, J = 7.1 Hz, 3H) ¹ H NMR (CDCl ₃) δ 8.56 (d, J = 8.4 Hz, 1H), 8.31 (d, J = 5.4 Hz, 1H), 7.14-7.04 (m, 4H), 6.98 (d, J = 5.5 Hz, 1H),	¹³ C NMR (CDCl ₃) δ 171.66, 168.83, 162.65, 159.40, 146.75, 141.13,		

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			C ₃₀ H ₄₁ N ₂ O ₈ , 557.2857; found, 557.286	5.05-4.91 (m, 2H), 3.97 (dd, J = 11.7, 7.3 Hz, 1H), 3.88 (s, 3H), 3.72-3.61 (m, 1H), 3.59-3.46 (m, 2H), 3.17-3.05 (m, 2H), 2.38 (s, 3H), 2.31 (s, 3H), 2.28-2.23 (m, 1H), 1.99-1.86 (m, 1H), 1.66-1.55 (m, 2H), 1.49 (d, J = 6.3 Hz, 3H), 1.41-1.28 (m, 4H),	137.49, 136.78, 135.54, 129.12, 129.11, 129.04, 109.91, 84.93, 75.71, 72.67, 72.37, 56.29, 51.61, 47.32, 34.72, 30.01, 28.36, 22.59, 21.02, 20.72, 18.80, 14.03.
F54	88-93	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₉ H ₃₇ N ₂ O ₉ , 557.2494; found, 557.2497	0.94-0.86 (m, 3H) ¹ H NMR (CDCl ₃) & 8.58 (d, J = 8.3 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.13-7.06 (m, 2H), 7.06-6.96 (m, 3H), 5.13-5.00 (m, 2H), 4.95 (app t, J = 9.3 Hz, 1H), 3.98 (dd, J = 11.7, 7.3 Hz, 1H), 3.89 (s, 3H), 3.60 (dd, J = 10.8, 1.7 Hz, 1H), 3.55-3.41 (m, 2H), 2.67 (dd, J = 13.8, 3.5 Hz, 1H), 2.64-2.52 (m, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.22 (dd, J = 13.7, 11.6 Hz, 1H), 2.14-2.01 (m, 1H), 1.33 (d, J = 6.3 Hz, 3H), 1.21 (app dd, J = 7.0, 14.6 Hz, 1H), 1.21 (app dd, J = 7.0, 14.6 Hz, 1H)	
F55	_	_	HRMS-ESI (m/z) [M + Na] ⁺ calc for C ₃₀ H ₄₀ N ₂ O ₈ Na, 579.2677; found, 579.2684	1.6 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.67 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.33-7.24 (m, 2H), 7.23-7.14 (m, 3H), 6.99 (d, J = 5.5 Hz, 1H), 5.08-4.90 (m, 2H), 4.07 (dd, J = 11.7, 7.1 Hz, 1H), 3.88 (s, 3H), 3.74 (dd, J = 10.9, 1.6 Hz, 1H), 3.65-3.55 (m, 2H), 3.55-3.39 (m, 2H), 3.06 (app t, J = 9.1 Hz, 1H), 2.76 (ddd, J = 13.7, 10.9, 4.7 Hz, 1H), 2.56 (ddd, J = 13.8, 10.4, 6.3 Hz, 1H), 2.39 (s, 3H), 2.02-1.89 (m, 1H), 1.76-1.64 (m, 1H), 1.59-1.41 (m, 6H), 1.37-1.24 (m, 4H), 0.93-0.84 (m, 3H)	13C NMR (CDCl ₃) & 171.41, 168.84, 162.72, 159.42, 146.79, 142.18, 141.15, 137.52, 128.39, 128.36, 125.84, 109.95, 84.68, 75.68, 74.69, 73.08, 72.27, 56.30, 51.95, 45.18, 33.30, 31.11, 29.97, 28.37, 22.59, 20.74, 18.85, 14.03
F56	74-79	_	HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{28}H_{34}FN_2O_9$, 561.2243; found 561.2263	¹ H NMR (CDCl ₃) & 8.59 (d, J = 8.1 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.14-7.05 (m, 2H), 7.03-6.93 (m, 3H), 5.14-5.01 (m, 2H), 4.95 (app t, J = 9.3 Hz, 1H), 4.01 (dd, J = 11.7, 7.3 Hz, 1H), 3.89 (s, 3H), 3.61-3.43 (m, 3H), 2.68 (dd, J = 14.0, 3.8 Hz, 1H), 2.64-2.52 (m, 1H), 2.38 (s, 3H), 2.27 (dd, J = 14.1, 11.3 Hz, 1H), 2.11-1.98 (m, 1H), 1.33 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0, 1.8 Hz, 6H)	
F57	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₈ H ₃₄ FN ₂ O ₉ , 554.2264; found, 554.2267	11.2 (app da, 3 = 7.6), 12.3 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 5.4 Hz, 1H), 7.30-7.25 (m, 2H), 7.21-7.11 (m, 3H), 7.01 (d, J = 5.5 Hz, 1H), 5.13-5.05 (m, 1H), 5.05-4.97 (m, 1H), 4.08 (dd, J = 11.8, 7.2 Hz, 1H), 3.91 (s, 3H), 3.83 (dd, J = 10.9, 1.5 Hz, 1H), 3.72-3.62 (m, 2H), 2.77-2.66 (m, 1H), 2.40 (s, 3H), 1.89-1.79 (m, 1H), 1.68-1.57 (m, 2H), 1.57-1.44 (m,	13C NMR (CDCl ₃) 8 174.16, 171.34, 168.86, 162.71, 159.45, 146.76, 141.76, 141.11, 137.56, 128.39, 128.32, 125.92, 109.95, 76.26, 74.46, 74.34, 73.14, 56.31, 51.94, 43.87, 32.45, 31.32, 20.73, 18.30, 12.88, 8.55

	Analytical Data				
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹ H NMR	¹³ C or ¹⁹ F NMR
				1H), 1.32 (d, J = 6.3 Hz, 3H), 1.04-0.96 (m, 2H), 0.93-0.85 (m, 2H)	
F58	_	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{32}H_{36}N_2O_8$,	¹ H NMR (CDCl ₃) δ 8.67 (d, J = 8.3 Hz, 1H), 8.35 (d, J = 5.5 Hz, 1H), 7.24-7.18 (m, 2H), 7.18-7.10 (m, 1H), 7.09-7.05 (m, 2H), 7.03-6.98 (m,	¹³ C NMR (CDCl ₃) δ 171.39, 168.87, 162.73, 159.44, 156.97, 146.79, 141.76, 141.14,
			576.2472; found, 576.2492	3H), 6.85-6.79 (m, 2H), 5.17-5.03 (m, 2H), 4.19 (t, J = 8.9 Hz, 1H), 4.12 (dd, J = 11.7, 7.2 Hz, 1H), 3.91 (s, 3H), 3.80 (dd, J = 10.9, 1.7 Hz, 1H), 3.72 (dd, J = 10.9, 6.5 Hz, 1H), 3.62 (dd, J = 11.7, 6.7 Hz, 1H), 2.72-2.61 (m, 1H), 2.57-2.46 (m, 1H), 2.40 (s, 3H), 2.28 (s, 3H), 1.60 (m, 2H), 1	137.55, 130.48, 130.13, 128.35, 128.29, 125.80, 115.27, 109.95, 81.87, 75.55, 74.33, 73.05, 56.31, 51.91, 45.40, 33.08, 31.25, 20.74, 20.43, 19.06
F59	_	_	HRMS-ESI (m/z)	1.97-1.80 (m, 2H), 1.60-1.47 (m, 1H), 1.36 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) \(\delta \) 8.59 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 5.5 Hz,	¹³ C NMR (CDCl ₃) δ 171.64, 168.85,
			[M] ⁺ calcd for C ₃₀ H ₃₁ FN ₂ O ₈ , 566.2064; found, 566.2073	1H), 7.36-7.28 (m, 2H), 7.15-7.04 (m, 2H), 7.04-6.87 (m, 6H), 5.22-5.12 (m, 1H), 5.05 (dt, J = 8.6, 7.4 Hz, 1H), 4.30 (t, J = 8.9 Hz, 1H), 4.10-4.03 (m, 1H), 3.90 (s,	162.71, 161.42 (d, J = 244.2 Hz), 159.44, 159.08, 146.77, 141.07, 137.55, 135.07, 130.49 (d, J = 7.8 Hz), 129.77,
				3H), 3.55 (d, J = 4.1 Hz, 2H), 3.43 (dd, J = 11.7, 7.4 Hz, 1H), 2.98 (dd, J = 13.8, 3.3 Hz, 1H), 2.39 (s, 3H), 2.31 (dd, J = 13.8, 11.6 Hz, 1H), 2.19-2.07 (m, 1H), 1.38 (d, J = 6.4 Hz, 3H)	121.37, 115.42, 115.20 (d, J = 21.2 Hz), 109.96, 81.77, 75.41, 72.42, 71.74, 56.31, 51.57, 47.76, 34.57, 20.73, 18.99
F60	_	_	ESIMS m/z 546 [M ⁺]	³ H NMR (CDCl ₃) δ 8.56 (d, J = 8.5 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.20-7.09 (m, 2H), 7.03-6.93 (m, 3H), 4.99 (ddd, J = 9.0, 7.9, 6.8 Hz, 2H), 4.00 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.50-3.28 (m, 5H), 3.20-3.02 (m, 2H), 2.38 (s, 3H), 2.30 (dd, J = 13.7, 11.7 Hz, 1H), 1.88 (ddt, J = 13.3, 8.6, 4.8 Hz, 2H), 1.48 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.7 Hz, 1.48 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.7 Hz, 1.20 (dx), 1 (19 F NMR (CDCl ₃) δ –117.24
F61	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for	6H) ¹ H NMR (CDCl ₃) δ 8.59 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.14-6.96 (m, 5H), 5.12-5.01 (m, 2H), 4.94 (t, J = 9.3 Hz,	¹³ C NMR (CDCl ₃) δ 174.28, 171.55, 168.85, 162.65, 159.43, 146.72,
			C ₂₉ H ₃₄ N ₂ O ₉ , 554.2264; found, 554.2270	1H), 3.97 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.65-3.57 (m, 1H), 3.54-3.43 (m, 2H), 2.72 (dd, J = 14.0, 3.7 Hz, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.26-2.18 (m, 1H), 2.14-2.04 (m, 1H), 1.69-1.61 (m, 1H), 1.34 (d, J = 6.3 Hz, 3H), 1.07-1.01 (m,	141.09, 137.54, 135.88, 135.80, 129.20, 128.90, 109.91, 76.96, 74.25, 72.66, 56.29, 51.73, 45.83, 34.56, 21.02, 20.72, 18.26, 12.88, 8.64, 8.61
F62	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃ F ₃ N ₂ O ₈ , 596.2346; found, 596.2353	2H), 0.97-0.86 (m, 2H) ¹ H NMR (CDCl ₃) δ 8.56 (d, J = 8.5 Hz, 1H), 8.32 (d, J = 5.5 Hz, 1H), 7.15-7.04 (m, 4H), 6.99 (d, J = 5.5 Hz, 1H), 5.04-4.91 (m, 2H), 3.99 (dd, J = 11.7, 7.4 Hz, 1H), 3.89 (s, 3H), 3.79-3.65 (m, 1H), 3.63-3.54 (m, 1H), 3.52-3.32 (m, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.00 (dd, J = 13.6, 3.6 Hz, 1H), 2.38 (s, 3H), 2.32 (s,	¹³ C NMR (CDCl ₃) δ 171.65, 168.84, 162.66, 159.42, 146.74, 141.10, 137.51, 136.40, 135.72, 129.18, 128.95, 127.11 (q, J = 276.0 Hz), 109.91, 85.06, 75.31, 72.31, 72.16, 70.41, 56.29, 51.55, 47.18, 34.80,

5 3, 133, 122 32

182

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F63	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₁ H ₃₄ N ₂ O ₈ , 562.2315; found, 562.2339	1.90-1.79 (m, 2H), 1.47 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 8.58 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.35-7.28 (m, 2H), 7.09-6.91 (m, 8H), 5.21-5.11 (m, 1H), 5.05 (dt, J = 8.6, 7.5 Hz, 1H), 4.30 (t, J = 8.8 Hz, 1H), 4.04 (dd, J = 11.7, 7.4 Hz, 1H), 3.90 (s, 3H), 3.61-3.52 (m, 2H), 3.42 (dd, J = 11.7,	21.01, 20.72, 18.81 ¹³ C NMR (CDCl ₃) δ 171.70, 168.85, 162.68, 159.43, 159.19, 141.10, 137.54, 136.27, 135.63, 129.71, 129.10, 128.98, 121.26, 115.49, 109.94, 81.91, 75.51,
F64	_	_	HRMS-ESI	7.4 Hz, 1H), 2.99 (dd, J = 13.3, 2.9 Hz, 1H), 2.39 (s, 3H), 2.29 (s, 3H), 2.28-2.21 (m, 1H), 2.20-2.14 (m, 1H), 1.39 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 8.54 (d, J = 8.4 Hz,	72.32, 71.93, 56.31, 53.43, 51.57, 47.60, 34.85, 21.01, 20.73, 19.03
			(m/z) $[M]^+$ calcd for $C_{30}H_{38}N_2O_8$, 554.2628; found, 554.2639	1H), 8.32 (d, J = 5.4 Hz, 1H), 7.13-7.04 (m, 4H), 6.99 (d, J = 5.5 Hz, 1H), 6.99 (d, J = 5.5 Hz, 1H), 5.04-4.88 (m, 2H), 4.08 (td, J = 5.6, 3.6 Hz, 1H), 4.01 (dd, J = 11.6, 7.0 Hz, 1H), 3.89 (s, 3H), 3.50-3.41 (m, 2H), 3.35-3.24 (m, 2H), 3.14 (dd, J = 13.7, 3.5 Hz, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.27 (dd, J = 13.5, 12.1 Hz, 1H), 1.91-1.63 (m, 7H), 1.63-1.52 (m, 2H), 1.50 (d, J = 6.5 Hz, 3H)	171.77, 168.86, 162.63, 159.40, 146.73, 141.20, 137.49, 137.15, 135.49, 129.13, 128.99, 109.87, 83.51, 83.43, 76.13, 73.22, 72.55, 56.29, 51.85, 47.49, 34.67, 32.73, 32.63, 23.02, 22.99, 21.02, 20.73, 18.93
F65	_	_	HRMS-ESI (m/z) [M] $^+$ calcd for C ₂₉ H ₃₅ F ₃ N ₂ O ₈ , 596.2346; found, 596.2358	¹ H NMR (CDCl ₃) 8 8.57 (d, J = 8.5 Hz, 1H), 8.32 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 5.5 Hz, 1H), 5.05-4.94 (m, 2H), 4.00 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.52-3.28 (m, 5H), 3.21-3.10 (m, 2H), 2.47-2.35 (m, 4H), 2.02-1.83 (m, 2H), 1.49 (d, J = 6.3 Hz, 3H), 0.96 (d, J = 6.7 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 171.57, 168.83, 162.68, 159.42, 146.74, 144.26, 141.11, 137.52, 129.45, 128.49 (q, J = 32.2 Hz), 125.37 (q, J = 3.7 Hz), 109.91, 84.54, 79.41, 75.59, 72.48, 71.94, 56.29, 51.57, 47.42, 35.02, 29.18, 20.71, 19.46, 18.81
F66	_	_	HRMS-ESI (m/z) [M] $^+$ calcd for C ₃₀ H ₃₅ F ₃ N ₂ O ₈ , 608.2346; found, 608.2360	¹ H NMR (CDCl ₃) δ 8.55 (d, J = 8.2 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 5.5 Hz, 1H), 5.05-4.88 (m, 2H), 4.18-3.97 (m, 2H), 3.90 (s, 3H), 3.49-3.37 (m, 2H), 3.36-3.26 (m, 2H), 3.21 (dd, J = 13.6, 3.5 Hz, 1H), 2.49-2.40 (m, 1H), 2.38 (s, 3H), 1.96-1.55 (m, 9H), 1.51 (d, J = 6.5 Hz, 3H)	13°C NMR (CDCl ₃) 8 171.66, 168.84, 162.66, 159.41, 146.75, 144.59, 141.14, 137.51, 129.41, 128.43 (q, J = 32.4 Hz), 125.34 (q, J = 3.9 Hz), 124.30 (q, J = 271.9 Hz), 109.91, 83.58, 83.29, 76.01, 72.84, 72.75, 56.29, 51.83, 47.46, 35.08, 32.72, 32.63, 23.00, 20.72, 18.91
F67	_	_	HRMS-ESI (m/z) [M]* calcd for C ₂₉ H ₃₃ F ₃ N ₂ O ₉ , 610.2138; found, 610.2139	¹ H NMR (CDCl ₃) δ 8.66-8.51 (m, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.59-7.50 (m, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 5.5 Hz, 1H), 5.14-5.03 (m, 2H), 4.98 (t, J = 9.3 Hz, 1H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.58-3.42 (m, 3H), 2.75 (dd, J = 14.1, 3.9 Hz, 1H), 2.61-2.52 (m, 1H), 2.44-2.32 (m, 4H), 2.17-2.06 (m, 1H), 1.34 (d, J = 6.3 Hz, 3H), 1.21 (app dd, J = 7.0, 2.8 Hz, 6H)	¹⁹ F NMR (CDCl ₃) δ -62.43
F68	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for	2.8 Hz, 0H) H NMR (CDCl ₃) δ 8.74-8.59 (m, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.4 Hz, 1H), 5.02 (dt, J = 8.4, 6.7 Hz,	¹³ C NMR (CDCl ₃) δ 171.42, 168.84, 162.69, 159.40, 146.76, 141.19,

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹ H NMR	¹³ C or ¹⁹ F NMR
			C ₂₆ H ₄₀ N ₂ O ₈ , 508.2785; found, 508.2786	1H), 4.95 (dq, J = 9.3, 6.4 Hz, 1H), 4.02 (dd, J = 11.8, 7.1 Hz, 1H), 3.90 (s, 3H), 3.65 (dd, J = 10.6, 1.5 Hz, 1H), 3.59 (dd, J = 11.8, 6.4 Hz, 1H), 3.50 (dd, J = 10.7, 6.6 Hz, 1H), 3.34 (dd, J = 8.4, 6.4 Hz, 1H), 3.26 (dd, J = 8.3, 6.3 Hz, 1H), 3.01 (t, J = 9.1 Hz, 1H), 2.39 (s, 3H), 1.83 (hept, J = 6.6 Hz, 1H), 1.71-1.48 (m, 3H), 1.44 (d, J = 6.4 Hz, 3H), 1.36-1.23 (m, 1H), 1.20-1.07 (m, 2H), 0.92 (d, J = 6.7 Hz, 6H), 0.88 (app dd, J = 6.6, 2.4 Hz, 2.1 Hz, 2.1 Hz, 2.2 Hz, 2.4 Hz, 2.1 Hz, 2.1 Hz, 2.2 Hz, 2.4 Hz, 2.4 Hz, 3.4 Hz	137.50, 109.88, 84.40, 78.81, 75.80, 75.04, 73.02, 56.29, 51.97, 45.74, 35.99, 29.13, 28.40, 26.73, 22.76, 22.43, 20.73, 19.49, 18.90
F69	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₈ N ₂ O ₈ , 542.2628; found, 542.2634	3.4 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.68 (d, J = 8.3 Hz, 1H), 8.34 (d, J = 5.4 Hz, 1H), 7.12-7.04 (m, 2H), 7.01 (d, J = 5.5 Hz, 1H), 6.85-6.75 (m, 2H), 5.18-5.01 (m, 2H), 4.17-4.02 (m, 2H), 3.91 (s, 3H), 3.72 (dd, J = 10.9, 1.6 Hz, 1H), 3.62 (dd, J = 11.4, 6.7 Hz, 2H), 2.39 (s, 3H), 2.28 (s, 3H), 1.90-1.77 (m, 1H) 1.60-1.47 (m, 1H), 1.43-1.31 (m, 4H), 1.22-1.07 (m, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H), 0.74 (d, J = 6.6 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 171.43, 168.85, 162.72, 159.43, 157.12, 146.78, 141.15, 137.54, 130.30, 130.04, 115.23, 109.92, 82.03, 75.65, 74.56, 73.01, 56.30, 51.93, 45.98, 35.88, 28.04, 27.01, 22.78, 22.12 20.73, 20.43, 19.10
F70	_	_	HRMS ESI (m/z) [M] ⁺ calcd for C ₂₅ H ₃₈ N ₂ O ₈ , 494.2628; found, 494.2632	3H) ¹ H NMR (CDCl ₃) & 8.66 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.5 Hz, 1H), 7.00 (d, J = 8.4, 7.2, 6.4 Hz, 1H), 4.94 (dq, J = 9.2, 6.4 Hz, 1H), 4.92 (dd, J = 11.8, 7.1 Hz, 1H), 3.90 (s, 3H), 3.70-3.41 (m, 5H), 3.02 (t, J = 9.2 Hz, 1H), 2.39 (s, 3H), 1.71-1.48 (m, 5H), 1.45 (d, J = 6.3 Hz, 3H), 1.36-1.21 (m, 1H), 1.22-1.08 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H), 0.88 (app dd, J = 6.6, 3.9 Hz,	¹³ C NMR (CDCl ₃) 8 171.42, 168.84, 162.69, 159.40, 146.75, 141.18, 137.50, 109.88, 84.69, 75.81, 75.01, 73.95, 73.02, 56.29, 51.95, 45.72, 35.96, 28.37, 26.81, 23.44, 22.77, 22.37, 20.72, 18.87, 10.69
F71	_	_	HRMS ESI (m/z) [M] ⁺ calcd for $C_{27}H_{40}N_2O_8$, 520.2785; found, 520.2802	6H) ¹ H NMR (CDCl ₃) & 8.65 (d, J = 8.2 Hz, 1H), 8.34 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.5 Hz, 1H), 5.03-4.89 (m, 2H), 4.06 (dd, J = 11.8, 6.6 Hz, 1H), 4.02-3.95 (m, 1H), 3.90 (s, 3H), 3.68-3.47 (m, 3H), 3.16 (t, J = 8.5 Hz, 1H), 2.39 (s, 3H), 1.79-1.59 (m, 7H), 1.59-1.48 (m, 4H), 1.45 (d, J = 6.5 Hz, 3H), 1.37-1.22 (m, 1H), 1.18-1.01 (m, 2H), 0.88 (exp. dd, L = 6.6, 4.3 Hz, 6H)	¹³ C NMR (CDCl ₃) 8 171.44, 168.85, 162.67, 159.39, 146.74, 141.25, 137.49, 109.85, 83.57, 83.18, 76.33, 76.13, 73.53, 56.28, 52.31, 46.18, 36.66, 32.62, 32.55, 28.46, 26.85, 23.06, 23.02, 22.73, 22.50, 20.73, 18.97
F72	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₈ H ₃₃ F ₃ N ₂ O ₈ , 582.2189; found, 582.2197	0.88 (app dd, J = 6.6, 4.3 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.58 (d, J = 8.6 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.5 Hz, 1H), 6.81 (dd, J = 8.3, 6.4 Hz, 2H), 5.06-4.91 (m, 2H), 4.02 (dd, J = 11.7, 7.2 Hz, 1H), 3.90 (s, 3H), 3.51-3.36 (m, 4H), 3.29 (dd, J = 8.3, 6.3 Hz, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.04 (dd, J = 13.8, 3.4 Hz, 1H), 2.38 (s, 3H), 2.31 (dd, J = 13.8, 11.8 Hz, 1H), 1.87 (dt, J = 13.3, 6.7 Hz, 2H), 1.48 (d, J = 6.4 Hz, 3H), 0.95 (app dd, J = 6.7, 1.3 Hz, 6H)	¹⁹ F NMR (CDCl ₃) δ -134.78 (d, J = 20.5 Hz), -163.99 (t, J = 21.0 Hz)

Analytical Data						
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR	
F73	93-97	_	HRMS-ESI (m/z) [M] $^+$ calcd for $C_{28}H_{32}Cl_2N_2O_9$, 610.1485; found, 610.1498	¹ H NMR (CDCl ₃) δ 8.57 (d, J = 7.7 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.35 (d, J = 1.9 Hz, 1H), 7.25-7.07 (m, 2H), 7.00 (d, J = 5.5 Hz, 1H), 5.21-4.78 (m, 3H), 4.06 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.63-3.28 (m, 3H), 2.79 (dd, J = 13.9, 3.5 Hz, 1H), 2.61 (dt, J = 14.0, 7.0 Hz, 1H), 2.55-2.44 (m, 1H), 2.39 (s, 3H), 2.18-2.10 (m, 1H), 1.34 (d, J = 6.3 Hz, 3H), 1.22 (d, J = 7.0 Hz, (GE))	¹³ C NMR (CDCl ₃) δ 176.30, 171.57, 168.84, 162.67, 159.44, 146.74, 141.02, 137.54, 135.21, 134.88, 132.93, 132.38, 129.47, 127.11, 109.96, 76.57, 73.96, 72.41, 71.29, 56.30, 51.52, 44.02, 34.22, 32.33, 20.72, 18.97, 18.16	
F74	69-73	_	HRMS-ESI (m/z) [M] $^+$ calcd for $C_{28}H_{34}Cl_2N_2O_8$, 596.1692; found, 596.1707	6H) ¹ H NMR (CDCl ₃) & 8.58 (d, J = 7.7 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.36 (d, J = 1.7 Hz, 1H), 7.36 (d, J = 1.7 Hz, 1H), 7.24-7.11 (m, 2H), 7.00 (d, J = 5.5 Hz, 1H), 5.00 (p, J = 7.5, 7.0 Hz, 2H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.89 (s, 3H), 3.58-3.23 (m, 5H), 3.23-3.02 (m, 2H), 2.60-2.46 (m, 1H), 2.38 (s, 3H), 2.08-1.98 (m, 1H), 1.89 (dq, J = 13.2, 6.6 Hz, 1H), 1.49 (d, J = 6.4 Hz, 3H), 0.95 (dd, J = 6.7, 1.1 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 171.54, 168.83, 162.68, 159.41, 146.75, 141.11, 137.51, 136.18, 135.04, 132.53, 132.14, 129.33, 127.08, 109.92, 84.94, 79.71, 75.64, 72.53, 71.92, 56.30, 51.64, 45.90, 32.12, 29.17, 20.72, 19.49, 18.77	
F75	55-59	_	HRMS-ESI (m/z) [M] $^+$ calcd for $C_{29}H_{36}Cl_2N_2O_8$, 610.1849; found, 610.1862	¹ H NMR (CDCl ₃) δ 8.57 (d, J = 7.7 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.36 (d, J = 1.8 Hz, 1H), 7.25-7.10 (m, 2H), 7.00 (d, J = 5.5 Hz, 1H), 5.07-4.89 (m, 2H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.75-3.62 (m, 1H), 3.61-3.50 (m, 1H), 3.42-3.37 (m, 3H), 3.23-2.97 (m, 2H), 2.54 (dd, J = 13.6, 12.2 Hz 1H), 2.39 (s, 3H), 2.06-1.96 (m, 1H), 1.62-1.57 (m, 2H), 1.49 (d, J = 6.4 Hz, 3H), 1.43-1.19 (m, 4H), 0.89 (d, J = 6.7 Hz,	¹³ C NMR (CDCl ₃) δ 171.57, 168.84, 162.68, 159.42, 146.75, 141.12, 137.51, 136.17, 135.04, 132.55, 132.12, 129.34, 127.08, 109.92, 85.22, 73.24, 72.50, 71.87, 56.30, 51.61, 45.87, 32.18, 31.59, 29.97, 28.33, 22.66, 20.72, 18.72, 14.01	
F76	97-101	_	HRMS-ESI (m/z) [M] $^{+}$ calcd for C ₃₁ H ₃₂ Cl ₂ N ₂ O ₈ , 630.1536; found, 630.1531	3H) ¹ H NMR (CDCl ₃) & 8.59 (d, J = 7.8 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.32 (s, 1H), 7.14 (d, J = 1.1 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 5.5 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 5.22-5.10 (m, 1H), 5.04 (q, J = 7.6 Hz, 1H), 4.28 (t, J = 8.8 Hz, 1H), 4.08 (dd, J = 11.7, 7.4 Hz, 1H), 3.89 (s, 3H), 3.56 (dd, J = 11.1, 6.3 Hz, 1H), 3.40 (dd, J = 10.3 Hz, 1H), 3.40 (dd, J = 13.7, 3.5 Hz, 1H), 2.57-2.45 (m, 1H), 2.39 (s, 3H), 2.29 (s, 3H), 2.28-2.17 (m, 1H), 1.40 (d, J = 6.4 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 171.62, 168.84, 162.71, 159.45, 156.98, 146.77, 141.08, 137.55, 135.80, 134.97, 132.67, 132.22, 130.64, 130.18, 129.37, 127.03, 115.16, 109.97, 81.99, 75.40, 72.37, 71.35, 56.31, 51.54, 46.13, 32.39, 20.73, 20.44, 18.94	
F77	66-69	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₈ N ₂ O ₉ , 534.2577; found, 534.2581	3H) ¹ H NMR (CDCl ₃) & 8.64 (d, J = 7.8 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.01 (d, J = 5.5 Hz, 1H), 5.12-5.04 (m, 1H), 5.01 (dd, J = 9.3, 6.4 Hz, 1H), 4.79 (t, J = 9.3 Hz, 1H), 4.07 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.72 (d, J = 10.7 Hz, 1H), 3.65-3.54 (m, 2H), 2.58 (p, J = 7.0 Hz, 1H), 2.39 (s, 3H), 1.90-1.69 (m, 4H),	¹³ C NMR (CDCl ₃) 8 176.17, 171.52, 168.81, 162.67, 159.43, 146.74, 141.07, 137.53, 109.95, 74.32, 73.78, 72.68, 56.29, 51.76, 43.57, 37.19, 35.02, 34.25, 33.62, 32.13, 25.01, 20.70, 18.96, 18.31	

				Analytical Data	
Cmpd No.	MP (° C.)	${\rm IR} \atop (cm^{-1})$	Mass	¹ H NMR	¹³ C or ¹⁹ F NMR
F78	56-59	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₄₀ N ₂ O ₈ , 520.2785; found, 520.2798	1.61-1.45 (m, 4H), 1.30 (d, J = 6.4 Hz, 3H), 1.20 (d, J = 7.0 Hz, 6H), 1.11-0.94 (m, 4H) ¹ H NMR (CDCl ₃) & 8.62 (d, J = 7.5 Hz, 1H), 8.34 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.5 Hz, 1H), 5.04-4.97 (m, 1H), 4.94 (dd, J = 9.1, 6.4 Hz, 1H), 4.05 (dd, J = 11.7, 7.2 Hz, 1H), 3.90 (s, 3H), 3.62 (d, J = 9.6 Hz, 1H), 3.56-3.47 (m, 2H), 3.36 (dd, J = 8.3, 6.2 Hz, 1H), 3.23 (dd, J = 8.3, 6.6 Hz, 1H), 2.96 (t, J = 9.0 Hz, 1H), 2.96 (t, J = 9.0 Hz, 1H), 2.99 (s, 3H), 1.93-1.71 (m, 4H),	¹³ C NMR (CDCl ₃) δ 171.59, 168.85, 162.68, 159.41, 146.75, 141.20, 109.88, 84.88, 79.01, 75.87, 74.17, 72.68, 56.29, 51.80, 44.70, 37.39, 34.95, 33.89, 32.03, 29.14, 25.09, 20.72, 19.53, 18.86
F79	46-51	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₈ H ₄₂ N ₂ O ₈ , 534.2941; found, 534.2945	1.69-1.47 (m, 5H), 1.44 (d, J = 6.4 Hz, 3H), 1.30-1.19 (m, 2H), 1.15-1.01 (m, 2H), 0.92 (dd, J = 6.7, 4.5 Hz, 6H) 1H NMR (CDCl ₃) δ 8.63 (d, J = 7.6 Hz, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.00 (d, J = 5.5 Hz, 1H), 5.01 (q, J = 7.1 Hz, 1H), 4.93 (dd, J = 9.1, 6.4 Hz, 1H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.90 (s, 3H), 3.67-3.41 (m, 5H), 2.96 (t, J = 9.1 Hz, 1H), 2.39 (s, 3H),	¹³ C NMR (CDCl ₃) δ 171.58, 168.81, 162.67, 159.40, 146.75, 141.17, 137.49, 109.90, 85.23, 75.84, 74.21, 72.50, 56.28, 51.79, 44.69, 37.39, 35.09, 33.85, 32.05, 29.94, 28.36,
F80	_	_	HRMS-FAB (m/z) $[M + Na]^+$ calcd for $C_{29}H_{38}N_2O_8Na$,	1.95-1.83 (m, 1H), 1.82-1.71 (m, 2H), 1.67-1.47 (m, 8H), 1.44 (d, J = 6.4 Hz, 3H), 1.37-1.23 (m, 5H), 1.15-1.01 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H) ¹ H NMR (CDCl ₃) δ 8.56 (d, J = 7.8 Hz, 1H), 8.31 (d, J = 5.4 Hz, 1H), 7.08 (d, J = 2.4 Hz, 4H), 6.98 (d, J = 5.5 Hz, 1H), 4.99 (m, 2H), 3.98 (dd, J = 11.7,	25.06, 22.56, 20.70, 18.81, 14.00 ¹³ C NMR (CDCl ₃) δ 171.68, 168.84, 162.66, 159.41, 146.75, 141.13, 137.49, 136.82,
F81	45-50		565.2520; found, 565.2516	7.4 Hz, 1H), 3.88 (s, 3H), 3.40 (m, 6H), 3.11 (m, 2H), 2.38 (s, 3H), 2.31 (s, 3H), 2.26 (m, 1H), 1.90 (ddd, J = 19.8, 13.5, 6.8 Hz, 2H), 1.48 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) δ 8.49 (d, J = 8.0 Hz,	135.54, 129.13, 129.06, 109.91, 84.57, 79.12, 75.72, 72.32, 72.25, 56.30, 51.59, 47.41, 34.62, 29.19, 21.03, 20.73, 19.51, 18.85
101	43-30		[M + H] ⁺ caled for C ₃₁ H ₄₁ N ₂ O ₉ , 585.2807; found, 585.2831	11 H, N. (29 (d, J = 5.4 Hz, 1H), 7.33-7.24 (m, 2H), 7.22-7.15 (m, 3H), 6.96 (d, J = 5.4 Hz, 1H), 5.78-5.69 (m, 2H), 5.05-4.93 (m, 2H), 4.19-4.08 (m, 1H), 4.02-3.92 (m, 1H), 3.91 (s, 3H), 3.76-3.55 (m, 3H), 3.22 (app t, J = 8.3 Hz, 1H), 2.76 (ddd, J = 13.8, 11.1, 4.7 Hz, 1H), 2.60 (ddd, J = 13.7, 10.5, 6.1 Hz, 1H), 2.11-1.96 (m, 4H), 1.78-1.39 (m, 13H)	
F82	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₀ H ₄₁ N ₂ O ₉ , 573.2807; found, 573.2807	1.76-1.59 (II., 15H) 'IH NMR (CDCl ₃) & 8.49 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 5.4 Hz, 1H), 7.33-7.23 (m, 2H), 7.23-7.14 (m, 3H), 6.96 (d, J = 5.4 Hz, 1H), 5.74 (ab q, J = 7.9 Hz, 2H), 5.05 (app dt, J = 8.1, 6.8 Hz, 1H), 4.97 (dq, J = 9.0, 6.4 Hz, 1H), 4.11 (dd, J = 11.7, 7.1 Hz, 1H), 3.91 (s, 3H), 3.74 (dd, J = 10.9, 1.7 Hz, 1H), 3.67-3.57 (m, 2H), 3.29 (dd, J = 8.4, 6.4 Hz, 1H), 3.23 (dd, J = 8.3, 6.4 Hz, 1H), 3.07 (app t, J = 9.1 Hz, 1H), 2.77 (ddd, J = 13.5, 10.9, 4.7 Hz, 1H), 2.56 (ddd, J = 13.7,	¹³ C NMR (CDCl ₃) 8 171.51, 170.27, 163.21, 160.20, 145.81, 143.92, 142.17, 142.15, 128.37, 125.81, 109.71, 89.40, 84.33, 78.62, 75.65, 74.59, 73.05, 56.20, 52.17, 45.13, 33.29, 30.99, 29.07, 20.88, 19.44, 19.41, 18.88

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
				10.3, 6.5 Hz, 1H), 2.07 (s, 3H), 1.97 (dddd, J = 13.7, 10.8, 6.6, 3.0 Hz, 1H), 1.85-1.77 (m, 1H), 1.77-1.66 (m, 1H), 1.51 (ddd, J = 10.3, 8.4, 5.1 Hz, 1H), 1.45 (d, J = 6.4 Hz, 3H), 0.90 (app d, J = 6.7 Hz,	
F83	58-64	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₃ H ₃₉ N ₂ O ₁₀ , 623.2599; found, 623.2611	6H) ¹H NMR (CDCl ₃) δ 8.37 (d, J = 8.1 Hz, 1H), 8.24 (d, J = 5.3 Hz, 1H), 8.02-7.94 (m, 1H), 7.89-7.81 (m, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.56-7.43 (m, 2H), 7.40 (dd, J = 8.2, 7.0 Hz, 1H), 7.30 (dd, J = 7.1, 1.2 Hz, 1H), 6.92 (d, J = 5.4 Hz, 1H), 5.71 (d, J = 6.5 Hz, 2H), 5.17-5.06 (m, 3H), 4.04 (dd, J = 11.6, 7.4 Hz, 1H), 3.89 (s, 3H), 3.60 (d, J = 4.2 Hz, 2H), 3.40 (dd, J = 11.7, 7.1 Hz, 1H), 3.23 (dd, J = 14.2, 3.1 Hz, 1H), 2.77-2.63 (m, 2H), 2.29 (app ddt, J = 12.2, 8.1, 3.9 Hz, 1H), 2.04 (s, 3H),	
F84	61-68	_	HRMS-ESI (m/z) [M + H]* calcd for C ₃₃ H ₃₈ F ₃ N ₂ O ₉ , 663.2524; found, 663.2538	1.39 (d, J = 5.6 Hz, 3H), 1.29 (app dd, J = 7.0, 3.9 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.33 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 5.4 Hz, 1H), 8.16-8.08 (m, 1H), 7.85 (dd, J = 7.9, 1.6 Hz, 1H), 7.55-7.43 (m, 2H), 7.40 (dd, J = 8.2, 7.0 Hz, 1H), 7.33 (dd, J = 7.0, 1.3 Hz, 1H), 6.92 (d, J = 5.4 Hz, 1H), 5.74-5.68 (m, 2H), 5.09-4.90 (m, 2H), 4.07 (dd, J = 11.7, 7.5 Hz, 1H), 3.88 (s, 4H), 3.77 (app dt, J = 8.8, 6.0 Hz, 1H), 3.58 (dd, J = 13.6, 2.9 Hz, 1H), 3.52 (dd, J = 10.8, 5.7 Hz, 1H), 3.46-3.38 (m, 1H), 3.36-3.24 (m, 2H), 2.82-2.71 (m, 1H), 2.40-2.23 (m, 2H),	¹⁹ F NMR (CDCl ₃) δ –66.36
785	83-88	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for $C_{36}H_{39}N_2O_9$, 643.2650; found, 643.2639	2.15-1.90 (m, 6H), 1.54 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 8.36 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 5.3 Hz, 1H), 8.12-8.05 (m, 1H), 7.85-7.78 (m, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.55-7.41 (m, 2H), 7.36 (dd, J = 8.2, 7.0 Hz, 1H), 7.28 (dd, J = 7.0, 1.3 Hz, 1H), 7.18-7.10 (m, 2H), 7.06-6.99 (m, 2H), 6.91 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.20-5.03 (m, 2H), 4.44 (app t, J = 9.1 Hz, 1H), 3.87 (s, 3H), 3.66-3.48 (m, 3H), 3.34 (dd, J = 11.6, 7.8 Hz, 1H), 2.69 (app t, J = 12.9 Hz, 1H), 2.38-2.25 (m, 4H), 2.05 (s, 3H), 1.44 (d, J = 6.4 Hz, 1.5 Hz,	
F86	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₄ H ₄₁ N ₂ O ₉ , 621.2807; found, 621.2824	3H) ¹ H NMR (CDCl ₃) & 8.31 (d, J = 8.2 Hz, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.12 (dd, J = 8.3, 1.4 Hz, 1H), 7.83 (dd, J = 7.9, 1.5 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.56-7.43 (m, 2H), 7.39 (dd, J = 8.1, 7.0 Hz, 1H), 7.34 (dd, J = 7.0, 1.4 Hz, 1H), 6.91 (d, J = 5.4 Hz, 1H), 5.75-5.67 (m, 2H), 5.04-4.90 (m,	¹³ C NMR (CDCl ₃) δ 171.96, 170.27, 163.16, 160.17, 145.76, 143.88, 142.15, 136.10, 133.99, 132.12, 128.76, 127.71, 127.02, 125.95, 125.49, 125.33, 124.10, 109.69, 89.39,

	TABLE 2-continued Analytical Data						
Cmpd	MP	IR		Analytical Data	¹³ C or ¹⁹ F		
No.	(° C.)	(cm ⁻¹)	Mass	¹H NMR	NMR		
				2H), 4.29-4.19 (m, 1H), 4.08 (dd, J = 11.6, 7.2 Hz, 1H), 3.87 (s, 3H), 3.74 (dd, J = 13.5, 2.8 Hz, 1H), 3.56-3.36 (m, 3H), 3.23 (dd, J = 11.6, 7.9 Hz, 1H), 2.80-2.68 (m, 1H), 2.10-1.95 (m, 4H), 1.93-1.79 (m, 6H),	84.12, 83.39, 76.62, 72.18, 56.19, 51.76, 46.75, 33.00, 32.52, 32.42, 23.06, 23.00, 20.86, 18.99		
F87	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₃₃ H ₄₁ N ₂ O ₉ , 609.2807; found, 609.2813	1.65-1.53 (m, 5H) ¹ H NMR (CDCl ₃) δ 8.34 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 5.3 Hz, 1H), 8.20 (dd, J = 8.5, 1.4 Hz, 1H), 7.83 (dd, J = 7.9, 1.7 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.54-7.42 (m, 2H), 7.39 (dd, J = 8.1, 7.0 Hz, 1H), 7.33 (dd, J = 7.0, 1.3 Hz, 1H), 6.91 (d, J = 5.4 Hz, 1H), 5.71 (s, 2H), 5.09-5.00 (m, 1H), 5.00-4.91 (m, 1H), 4.05 (dd, J = 11.6, 7.5 Hz, 1H), 3.88 (s, 3H), 3.73-3.64 (m, 1H), 3.60 (dd, J = 8.4, 6.5 Hz, 1H), 3.56-3.40 (m, 3H), 3.55-3.22 (m, 2H), 2.71 (dd, J = 13.7, 11.9 Hz, 1H), 2.16-1.97 (m, 5H), 1.55 (d, J = 6.3 Hz, 3H), 1.03 (app dd, J = 6.7, 2.2 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 171.88, 170.25, 163.15, 160.15, 145.75, 143.87, 142.08, 135.79, 133.96, 132.12, 128.70, 127.78, 127.05, 125.87, 125.48, 125.28, 124.23, 109.68, 89.36, 85.24, 80.79, 76.12, 71.98, 71.49, 56.17, 51.59, 46.91, 32.60, 29.35, 20.85, 19.60, 19.58, 18.79		
F88	39-43	_	HRMS ESI (m/z) [M + H] ⁺ calcd for C ₃₁ H ₄₃ N ₂ O ₉ , 587.2963; found, 587.2981	³ H NMR (CDCl ₃) δ 8.40 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.14-7.04 (m, 4H), 6.94 (d, J = 5.4 Hz, 1H), 5.76-5.67 (m, 2H), 5.08-4.92 (m, 2H), 4.00 (dd, J = 11.7, 7.3 Hz, 1H), 3.89 (s, 3H), 3.67 (app dt, J = 8.7, 6.6 Hz, 1H), 3.59-3.48 (m, 2H), 3.19-3.06 (m, 2H), 2.35-2.22 (m, 4H), 2.05 (s, 3H), 1.99-1.86 (m, 1H), 1.67-1.54 (m, 2H), 1.50 (d, J = 6.3 Hz, 3H), 1.43-1.27 (m,			
F89	43-47	_	HRMS-ESI (m/z) [M + H] ⁺ caled for C ₃₀ H ₃₉ N ₂ O ₁₀ , 587.2599; found, 587.2625	4H), 0.94-0.85 (m, 3H) ¹ H NMR (CDCl ₃) & 8.42 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.09 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.71 (s, 2H), 5.14-5.02 (m, 2H), 4.96 (app t, J = 9.3 Hz, 1H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.65-3.57 (m, 1H), 3.57-3.44 (m, 2H), 2.68 (dd, J = 14.0, 3.6 Hz, 1H), 2.31 (s, 3H), 2.23 (dd, J = 13.9, 11.4 Hz, 1H), 2.14-2.02 (m, 4H), 1.34 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0,			
F90	59-64	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₉ H ₃₄ FN ₂ O ₁₀ , 589.2192; found, 589.2220	1.6 Hz, 6H) ¹ H NMR (CDCl ₃) δ 8.43 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.16-7.07 (m, 2H), 7.03-6.92 (m, 3H), 5.76-5.68 (m, 2H), 5.08 (m, 2H), 4.96 (app t, J = 9.3 Hz, 1H), 4.03 (dd, J = 11.7, 7.2 Hz, 1H), 3.91 (s, 3H), 3.65-3.57 (m, 1H), 3.57-3.47 (m, 2H), 2.73 (dd, J = 14.1, 3.9 Hz, 1H), 2.29 (dd, J = 14.1, 11.1 Hz, 1H), 2.14-2.00 (m, 4H),			

3, 133, 122 32

194

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F91	52-56	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₉ H ₃₆ FN ₂ O ₁₀ , 591.2349; found, 591.2368	1.70-1.58 (m, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.06-1.00 (m, 2H), 0.95-0.89 (m, 2H) ¹ H NMR (CDCl ₃) & 8.42 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.15-7.06 (m, 2H), 7.02-6.93 (m, 3H), 5.72 (s, 2H), 5.09 (m, 2H), 4.97 (app t, J = 9.3 Hz, 1H), 4.04 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.63-3.45 (m, 3H), 2.68 (dd, J = 14.1, 3.7 Hz, 1H), 2.59 (app hept, J = 7.0 Hz,	
F92	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₆ N ₂ O ₁₀ , 584.2377; found, 584.2370	1H), 2.28 (dd, J = 14.1, 11.3 Hz, 1H), 2.11-1.99 (m, 4H), 1.34 (d, J = 6.3 Hz, 3H), 1.22 (app dd, J = 7.0, 1.8 Hz, 6H) ¹H NMR (CDCl ₃) & 8.50 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 5.3 Hz, 1H), 7.31-7.24 (m, 2H), 7.22-7.11 (m, 3H), 6.96 (d, J = 5.4 Hz, 1H), 5.77-5.70 (m, 2H), 5.15-5.08 (m, 1H), 5.07-4.98 (m, 1H), 4.94 (t, J = 9.3 Hz, 1H), 4.11 (dd, J = 11.8, 7.2 Hz, 1H), 3.92 (s, 3H), 3.88-3.81 (m, 1H), 3.74-3.64 (m, 2H), 2.79-2.66 (m, 1H), 2.53-2.41 (m, 1H), 2.08 (s, 5.53-2.41 (m, 1H), 2.08 (s, 5.53-2.4	¹³ C NMR (CDCl ₃) δ 174.15, 171.44, 170.28, 163.22, 160.23, 145.79, 144.01, 142.11, 141.76, 128.39, 128.32, 125.92, 109.74, 89.43, 76.28, 74.55, 74.33, 73.21, 56.21, 52.21, 43.89, 32.46, 31.32, 20.88, 18.31, 12.87, 8.54
F93	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₄ F ₄ N ₂ O ₉ , 630.2200; found, 630.2211	23.92.41 (ii. 11), 2.08 (s, 3H), 1.88-1.79 (m, 1H), 1.65-1.58 (m, 2H), 1.57-1.45 (m, 1H), 1.33 (d, J = 6.2 Hz, 3H), 1.05-0.96 (m, 2H), 0.93-0.86 (m, 2H) ¹ H NMR (CDCl ₃) & 8.39 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 5.3 Hz, 1H), 7.19-7.09 (m, 2H), 7.04-6.90 (m, 3H), 5.76-5.67 (m, 2H), 5.07-4.93 (m, 2H), 4.04 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.77-3.67 (m, 1H), 3.67-3.54 (m, 1H), 3.48-3.37 (m, 3H), 3.17 (t, J = 8.9 Hz, 1H), 3.01 (dd, J = 13.8, 3.6 Hz, 1H), 2.42-2.30 (m, 1H), 2.29-2.15 (m, 2H), 2.06 (s, 3H), 1.98-1.80 (m, 3H), 1.48 (d, J = 6.4 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 171.68, 170.26, 163.18, 161.45 (d, J = 244.3 Hz), 160.21, 145.78, 143.94, 142.07, 135.18 (d, J = 3.0 Hz), 130.45 (d, J = 7.7 Hz), 127.07 (q, J = 276.0 Hz), 115.29 (d, J = 21.1 Hz), 109.73, 89.38, 85.07, 75.23, 72.44, 71.94, 70.62, 56.20, 51.81, 47.46, 34.44, 30.73 (q, J = 29.3 Hz),
F94	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₇ FN ₂ O ₉ 588.2483; found, 588.2504	¹ H NMR (CDCl ₃) δ 8.38 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.3 Hz, 1H), 7.19-7.09 (m, 2H), 7.02-6.89 (m, 3H), 5.77-5.68 (m, 2H), 5.05-4.91 (m, 2H), 4.13-4.02 (m, 2H), 3.90 (s, 3H), 3.50-3.38 (m, 2H), 3.38-3.27 (m, 2H), 3.14 (dd, J = 13.6, 3.5 Hz, 1H), 2.33 (dd, J = 13.7, 12.2 Hz, 1H), 2.06 (s, 3H), 1.90-1.68 (m, 7H), 1.62-1.47 (m, 5H)	23.00 (q, J = 3.1 Hz), 20.86, 18.79 ¹³ C NMR (CDCl ₃) δ 171.80, 170.26, 163.15, 161.35 (d, J = 243.7 Hz), 160.20, 145.76, 143.94, 142.14, 135.90 (d, J = 3.1 Hz), 130.47 (d, J = 7.5 Hz), 115.20 (d, J = 21.4 Hz), 109.69, 89.40, 83.56, 83.33, 76.08, 73.00, 72.70, 56.19, 52.08, 47.76, 34.36, 32.71, 32.62,
F95	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₉ FN ₂ O ₉ , 590.2640; found, 590.2658	¹ H NMR (CDCl ₃) δ 8.40 (d, J = 8.2 Hz, 1H), 8.31-8.22 (m, 1H), 7.19-7.08 (m, 2H), 7.03-6.92 (m, 3H), 5.76-5.68 (m, 2H), 5.07-4.90 (m, 2H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.74-3.61 (m, 1H), 3.57-3.49 (m, 1H), 3.49-3.35 (m, 3H), 3.20-3.05 (m, 2H), 2.32 (dd, J = 13.7,	23.00, 20.86, 18.91 13C NMR (CDCl ₃) 8 171.71, 170.26, 163.18, 161.40 (d, J = 244.0 Hz), 160.21, 145.78, 143.94, 142.13, 135.56 (d, J = 3.2 Hz), 130.52 (d, J = 7.7 Hz), 115.21 (d, J = 21.2 Hz), 109.71, 89.40, 84.91, 75.65,

	Analytical Data						
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR		
F96	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₇ FN ₂ O ₉ , 576.2483; found 576.2491	11.7 Hz, 1H), 2.06 (s, 3H), 1.95-1.82 (m, 1H), 1.66-1.53 (m, 2H), 1.52-1.44 (m, 3H), 1.41-1.30 (m, 4H), 0.96-0.87 (m, 3H) ¹ H NMR (CDCl ₃) δ 8.40 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 5.3 Hz, 1H), 7.15 (dd, J = 8.5, 5.5 Hz, 2H), 7.02-6.89 (m, 3H), 5.74-5.70 (m, 2H), 5.01 (ddd, J = 15.6, 8.7, 6.8 Hz, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.52-3.36 (m, 4H), 3.33 (dd, J = 8.4, 6.4 Hz, 1H), 3.18-3.06 (m, 2H), 2.31 (dd, J = 13.7, 11.7 Hz, 1H), 2.06 (s, 3H), 1.98-1.82 (m, 2H), 1.50 (d, J = 6.4 Hz, 1H)	72.89, 72.50, 72.18, 56.19, 51.85, 47.60, 34.40, 30.00, 28.34, 22.58, 20.86, 18.77, 14.01 13°C NMR (CDCl ₃) 8 171.72, 170.25, 163.17, 161.39 (d, J = 243.9 Hz), 160.20, 145.78, 143.92, 142.12, 135.59 (d, J = 3.0 Hz), 130.52 (d, J = 8.0 Hz), 115.20 (d, J = 21.2 Hz), 109.71, 89.39, 84.55, 79.34, 75.64, 72.45, 72.07, 56.19, 51.84, 47.69, 34.30, 29.18, 20.86,		
F97	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₆ N ₂ O ₁₀ , 584.2730; found, 584.2734	3H), 0.96 (d, J = 6.7 Hz, 6H) 1H NMR (CDCl ₃) & 8.43 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.3 Hz, 1H), 7.12-7.08 (m, 2H), 7.07-7.02 (m, 2H), 6.94 (d, J = 5.4 Hz, 1H), 5.74-5.67 (m, 2H), 5.08 (s, 2H), 4.95 (t, J = 9.3 Hz, 1H), 4.01 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.63 (dd, J = 10.6, 1.6 Hz, 1H), 3.57-3.44 (m, 2H), 2.73 (dd, J = 14.0, 3.7 Hz 1H) 2.31 (s, 3H) 2.29-2.17 (m, 1H), 2.15-2.07 (m, 1H), 2.06 (s, 2H), 1.70-1.60 (m, 2H), 1.35 (d, J = 6.3 Hz, 3H), 1.09-1.00 (m, 2H),	19.48, 18.81 13C NMR (CDCl ₃) 8 174.27, 171.65, 170.27, 163.16, 160.21, 145.75, 143.99, 142.07, 135.90, 135.80, 129.20, 128.90, 109.71, 89.42, 76.98, 74.24, 72.72, 56.20, 52.01, 45.85, 34.56, 21.02, 20.87, 18.27, 12.88, 8.64, 8.61		
F98	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₃ F ₃ N ₂ O ₁₀ , 638.2087; found, 638.2109	0.96-0.87 (m, 2H) ¹ H NMR (CDCl ₃) δ 8.44 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.15-5.03 (m, 2H), 4.98 (t, J = 9.3 Hz, 1H), 4.04 (dd, J = 11.7, 7.2 Hz, 1H), 3.91 (s, 3H), 3.63-3.48 (m, 3H), 2.80 (dd, J = 14.3, 4.3 Hz, 1H), 2.42 (dd, J = 14.2, 10.8 Hz, 1H), 2.23-2.10 (m, 1H), 2.06 (s, 3H), 1.65-1.56 (m, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.07-0.99 (m, 2H),	13C NMR (CDCl ₃) & 174.26, 171.56, 170.26, 163.19, 160.23, 145.77, 144.02, 143.36, 142.03, 129.31, 128.70 (q, J = 32.4 Hz), 125.44 (q, J = 3.7 Hz), 124.22 (q, J = 271.8 Hz), 109.75, 89.39, 76.88, 74.07, 72.84, 72.61, 56.21, 51.98, 45.67, 35.15, 20.86, 18.21, 12.79, 8.77, 8.68		
F99	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₃₇ F ₃ N ₂ O ₉ , 626.2451; found 626.2461	0.97-0.86 (m, 2H) ¹ H NMR (CDCl ₃) δ 8.40 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.07-4.95 (m, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.53-3.38 (m, 4H), 3.33 (dd, J = 8.3, 6.4 Hz, 1H), 3.23-3.09 (m, 2H), 2.42 (dd, J = 13.7, 11.8 Hz, 1H), 2.06 (s, 3H), 2.02-1.94 (m, 1H), 1.94-1.82 (m, 1H), 1.50 (d, J = 6.4 Hz, 3H),	13C NMR (CDCl ₃) 8 171.67, 170.26, 163.18, 160.20, 145.78, 144.27, 143.94, 142.10, 129.45, 128.48 (q, J = 32.1 Hz), 125.37 (q, J = 3.7 Hz), 124.28 (q, J = 271.8 Hz), 109.71, 89.39, 84.56, 79.48, 75.60, 72.52, 72.01, 56.19, 51.83, 47.48, 35.02, 29.19, 20.86, 19.46, 18.81		
F100	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for $C_{31}H_{37}F_{3}N_{2}O_{9}$, 638.2451; found,	0.96 (d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.38 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 5.3 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.05-4.92 (m, 2H), 4.16-4.02 (m, 2H), 3.91 (s,	¹³ C NMR (CDCl ₃) δ 171.77, 170.26, 163.16, 160.20, 145.77, 144.59, 143.94, 142.12, 129.41, 128.42 (q, J = 32.6 Hz), 125.36 (q, J = 3.7 Hz),		

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F101	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₅ F ₃ N ₂ O ₉ 612.2295; found, 612.2324	3H), 3.43 (qd, J = 11.5, 3.9 Hz, 2H), 3.38-3.29 (m, 2H), 3.22 (dd, J = 13.6, 3.5 Hz, 1H), 2.44 (dd, J = 13.6, 12.2 Hz, 1H), 2.05 (s, 3H), 1.96-1.68 (m, 7H), 1.61-1.55 (m, 2H), 1.52 (d, J = 6.5 Hz, 3H) ¹ H NMR (CDCl ₃) & 8.40 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.59-7.49 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.76-5.69 (m, 2H), 5.08-4.95 (m, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.66 (dt, J = 8.6, 6.6 Hz, 1H), 3.56-3.37 (m, 4H), 3.23-3.13 (m,	124.29 (q, $J = 271.8 \text{ Hz}$) 109.71, 89.39, 83.62, 83.29, 76.04, 72.90, 72.77, 56.19, 52.07, 47.50, 35.08, 32.72, 32.62, 23.00, 20.86, 18.91 ¹⁹ F NMR (CDCl ₃) δ -62.35
F102	_	_	HRMS-ESI (m/z) [M]* calcd for C ₃₀ H ₃₅ F ₃ N ₂ O ₁₀ , 640.2244; found, 640.2271	3.30-3.37 (III, 4H), 3.23-3.13 (III, 2H), 2.42 (dd, J = 13.7, 11.7 Hz, 1H), 2.06 (s, 3H), 2.01-1.89 (m, 1H), 1.69-1.58 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H) ¹ H NMR (CDCl ₃) 8 8.42 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.60-7.51 (m, 2H), 7.27 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (d, J = 0.7 Hz, 2H), 5.15-5.04 (m, 2H), 4.99 (t, J = 9.2 Hz, 1H), 4.05 (dd, J = 11.7, 7.2 Hz,	¹⁹ F NMR (CDCl ₃) δ –62.43
F103	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₁ H ₃₀ F ₃ N ₂ O ₉ , 640.2608; found, 640.2636	1H), 3.91 (s, 3H), 3.58-3.45 (m, 3H), 2.76 (dd, J = 14.2, 3.8 Hz, 1H), 2.58 (hept, J = 7.0 Hz, 1H), 2.40 (dd, J = 14.1, 11.4 Hz, 1H), 2.17-2.07 (m, 1H), 2.06 (s, 3H), 1.35 (d, J = 6.3 Hz, 3H), 1.21 (app dd, J = 7.0, 2.8 Hz, 6H) ¹ H NMR (CDCl ₃) δ 8.40 (d, J = 8.2 Hz, 1H), 8.30-8.22 (m, 1H), 7.55 (dt, J = 8.7, 1.5 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 5.4 Hz, 1H), 5.76-5.68 (m, 2H), 5.07-4.93 (m, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.69 (dt, J = 8.6, 6.6 Hz, 1H),	19 F NMR (CDCl ₃) δ –62.34
F104			HRMS-ESI	3.54 (dt, J = 8.7, 6.6 Hz, 11), 3.54 (dt, J = 8.7, 6.6 Hz, 11), 3.50-3.35 (m, 3H), 3.23-3.10 (m, 2H), 2.42 (dd, J = 13.7, 11.7 Hz, 1H), 2.06 (s, 3H), 2.01-1.89 (m, 1H), 1.65-1.56 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H), 1.36 (tq, J = 4.9, 2.8, 2.2 Hz, 4H), 0.95-0.86 (m, 3H) ¹ H NMR (CDCl ₃) & 8.43 (d, J = 8.2 Hz,	13 C NMR (CDCl ₃) δ
7104	_	_	[M]* calcd for C ₂₄ H ₃₃ F ₃ N ₂ O ₉ , 550.2138; found, 550.2138	IT NNIK (CDL3) 0 -4-3 (d, 3 = 8.2 Hz, 1H), 8.29 (d, J = 5.3 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.73 (d, J = 1.2 Hz, 2H), 5.08-4.93 (m, 2H), 4.12 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.68 (d, J = 4.0 Hz, 2H), 3.50 (dd, J = 11.7, 7.5 Hz, 1H), 3.42 (dd, J = 8.4, 6.4 Hz, 1H), 3.20 (dd, J = 8.4, 6.4 Hz, 1H), 3.11 (t, J = 8.8 Hz, 1H), 2.48-2.31 (m, 1H), 2.77-2.11 (m, 1H), 2.11-20.3 (m, 4H), 1.92-1.79 (m, 1H), 1.48 (d, J = 6.4 Hz, 3H), 0.93 (dd, J = 6.6,	Tin.63, 170.27, 163.22, 160.22, 145.80, 143.97, 142.06, 127.03 (q, J = 277.0 Hz), 109.75, 89.39, 83.18, 78.80, 75.48, 72.64, 72.40, 56.21, 51.73, 40.04, 32.64 (q, J = 28.0 Hz), 29.05, 20.87, 19.30, 18.86
F105	_	_	HRMS-ESI (m/z) [M] ⁺	1.0 Hz, 6H) ¹ H NMR (CDCl ₃) δ 8.42 (d, J = 8.1 Hz, 1H), 8.29 (d, J = 5.3 Hz, 1H), 6.96 (d, J = 5.4 Hz,	$^{19}\mathrm{F}$ NMR (CDCl ₃) δ –63.66

Analytical Data Const. MB					12 - 10
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			calcd for $C_{25}H_{33}F_3N_2O_9$, 562.2138; found, 562.2154	1H), 5.79-5.69 (m, 2H), 5.06-4.90 (m, 2H), 4.24-4.13 (m, 1H), 4.03-3.95 (m, 1H), 3.91 (s, 3H), 3.75-3.59 (m, 2H), 3.43 (dd, J = 11.7, 8.0 Hz, 1H), 3.27 (t, J = 7.8 Hz, 1H), 2.58-2.41 (m, 1H), 2.18-2.09 (m, 1H), 2.07 (s, 3H), 2.02-1.93 (m, 1H), 1.82-1.64 (m, 5H), 1.61-1.52 (m,	
F106	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₄₂ N ₂ O ₉ , 538.2890; found, 538.2912	3H), 1.48 (d, J = 6.5 Hz, 3H) ¹ H NMR (CDCl ₃) 8 8.49 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 5.5 Hz, 1H), 5.77-5.69 (m, 2H), 5.10-5.00 (m, 1H), 5.00-4.91 (m, 1H), 4.06 (dd, J = 11.8, 7.1 Hz, 1H), 3.91 (s, 3H), 3.70-3.57 (m, 2H), 3.51 (dd, J = 10.8, 6.6 Hz, 1H), 3.34 (dd, J = 8.3, 6.4 Hz, 1H), 3.02 (t, J = 9.2 Hz, 1H), 2.07 (s, 3H), 1.84 (hept, J = 6.7 Hz, 1H), 1.69-1.56 (m, 2H), 1.48-1.42 (m, 3H), 1.35-1.23 (m, 2H), 1.18-1.07 (m, 2H), 0.92 (d, J = 6.7 Hz, 6H), 0.88 (cons. dd, J = 6.6	¹³ C NMR (CDCl ₃) δ 171.53, 170.27, 163.21, 160.20, 145.79, 143.92, 142.21, 109.68, 89.44, 84.44, 78.86, 75.81, 75.10, 73.08, 56.19, 52.23, 45.79, 36.01, 29.14, 28.40, 27.97, 26.74, 22.76, 22.43, 20.88, 19.49, 18.91
F107	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₇ H ₃₉ F ₃ N ₂ O ₉ , 592.2608; found, 592.2622	6H), 0.88 (app dd, J = 6.6, 3.2 Hz, 6H) 'H NMR (CDCl ₃) & 8.48 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 5.3 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.78-5.67 (m, 2H), 5.05 (dt, J = 8.1, 6.8 Hz, 1H), 4.94 (dq, J = 9.0, 6.4 Hz, 1H), 4.94 (dd, J = 11.7, 7.1 Hz, 1H), 3.91 (s, 3H), 3.70-3.48 (m, 5H), 3.06 (t, J = 9.0 Hz, 1H), 2.29-2.12 (m, 2H), 2.07 (s, 3H), 1.90-1.79 (m, 2H), 1.66-1.48 (m, 3H), 1.44 (d, J = 6.4 Hz, 3H), 1.38-1.07 (m, 11.56)	¹⁹ F NMR (CDCl ₃) δ –66.42
F108	_	_	HRMS-ESI (m/z) [M] ⁺ caled for C ₂₇ H ₃₈ N ₂ O ₁₀ , 550.2526; found, 550.2536	3H), 0.93-087 (m, 6H) ¹ H NMR (CDCl ₃) δ 8.51 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 5.3 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.80-5.67 (m, 2H), 5.15-5.06 (m, 1H), 5.06-4.96 (m, 1H), 4.87 (t, J = 9.5 Hz, 1H), 4.07 (dd, J = 11.8, 7.1 Hz, 1H), 3.91 (s, 3H), 3.82-3.65 (m, 2H), 3.59 (dd, J = 10.8, 7.2 Hz, 1H), 2.07 (s, 3H), 1.79-1.69 (m, 1H), 1.69-1.59 (m, 1H), 1.45 (dq, J = 13.0, 6.5 Hz, 1H), 1.32 (d, J = 6.3 Hz, 3H), 1.29-1.19 (m, 2H), 1.17-1.06 (m, 2H), 1.06-0.98 (m, 2H),	13C NMR (CDCl ₃) δ 174.11, 171.42, 170.26, 163.21, 160.21, 145.78, 143.97, 142.11, 109.73, 89.41, 76.51, 75.12, 74.38, 73.31, 56.20, 52.32, 44.51, 35.28, 28.18, 27.00, 22.69, 22.16, 20.87, 18.32, 12.84, 8.48, 8.38
F109	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₅ F ₃ N ₂ O ₉ , 612.2295; found, 612.2318	0.95-0.89 (m, 2H), 0.89-0.80 (m, 6H) ¹ H NMR (CDCl ₃) & 8.41 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 5.4 Hz, 1H), 6.82 (dd, J = 8.3, 6.4 Hz, 2H), 5.72 (s, 2H), 5.07-4.92 (m, 2H), 4.05 (dd, J = 11.8, 7.3 Hz, 1H), 3.91 (s, 3H), 3.52-3.38 (m, 4H), 3.30 (dd, J = 8.4, 6.3 Hz, 1H), 3.12 (t, J = 9.0 Hz, 1H), 3.05 (dd, J = 13.8, 3.2 Hz, 1H), 2.32 (dd, J = 13.8, 11.8 Hz, 1H), 2.06 (s, 3H), 1.93-1.81 (m, 2H), 1.49 (d, J = 6.4 Hz, 3H), 0.95 (dd, J = 6.6, 1.3 Hz, 6H)	¹⁹ F NMR (CDCl ₃) δ -134.79 (dd, J = 20.4, 8.2 Hz), -163.72164.43 (m)

Analytical Data					
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹ H NMR	¹³ C or ¹⁹ F NMR
F110	62-66	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{29}H_{34}Cl_2N_2O_{10}$, 640.1591 ; found, 640.1594	¹ H NMR (CDCl ₃) & 8.40 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.24-7.07 (m, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.73-5.69 (m, 2H), 5.19-4.90 (m, 3H), 4.09 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.63-3.33 (m, 3H), 2.78 (d, J = 3.6 Hz, 1H), 2.61 (p, J = 7.0 Hz, 1H), 2.48 (dd, J = 13.8, 12.0 Hz, 1H), 2.17-2.11 (m, 1H), 2.06 (s, 3H), 1.35 (d, J = 6.3 Hz, 3H), 1.22 (d, J = 7.6 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 176.31, 171.68, 163.18, 160.24, 145.76, 135.22, 134.90, 132.95, 132.40, 129.50, 127.12, 109.74, 89.42, 73.97, 72.50, 71.41, 56.21, 51.81, 44.03, 34.24, 32.37, 20.88, 19.05, 18.98, 18.19
F111	49-53	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₃₆ Cl ₂ N ₂ O ₉ , 626.1798; found, 626.1804	¹ H NMR (CDCl ₃) & 8.40 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.36 (s, 1H), 7.26 (s, 1H), 7.27-7.12 (m, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.08-4.97 (m, 2H), 4.05 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.55-3.28 (m, 5H), 3.28-3.04 (m, 2H), 2.66-2.43 (m, 1H), 2.06 (s, 3H), 1.98-1.76 (m, 2H), 1.50 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.7 Hz, 6H)	13C NMR (CDCl ₃) 8 171.63, 170.25, 163.19, 160.20, 145.78, 143.92, 142.12, 136.19, 135.03, 132.52, 132.15, 129.32, 127.07, 109.72, 89.39, 84.94, 79.75, 75.65, 72.55, 72.01, 56.20, 51.89, 45.91, 32.13, 29.17, 20.86, 19.49, 18.77
F112	53-57	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{30}H_{38}Cl_2N_2O_9$, 640.1954; found, 640.1962	¹ H NMR (CDCl ₃) & 8.41 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.36 (s, 1H), 7.25-7.06 (m, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.12-4.85 (m, 2H), 4.05 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.75-3.64 (m, 1H), 3.62-3.52 (m, 1H), 3.62-3.52 (m, 1H), 3.62-3.52 (m, 1H), 3.62-3.64 (m, 1H), 2.13-1.97 (m, 1H), 2.06 (s, 3H), 1.69-1.54 (m, 2H), 1.50 (d, J = 6.4 Hz, 3H), 1.38-1.31 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H)	13C NMR (CDCl ₃) 8 171.65, 170.23, 163.18, 160.20, 145.78, 143.92, 142.10, 136.17, 135.03, 132.52, 132.13, 129.33, 127.06, 109.73, 89.37, 85.22, 75.63, 73.28, 72.52, 71.95, 56.20, 51.86, 45.87, 32.20, 29.96, 28.32, 22.57, 20.86, 18.72, 14.01
F113	70-74	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₂ H ₃₄ Cl ₂ N ₂ O ₉ , 660.1641; found, 660.1647	HN, 8.27 (d, J = 5.4 Hz, 1H), 8.27 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 7.32 (s, 1H), 7.15 (s, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 5.4 Hz, 1H), 6.88 (d, J = 8.5 Hz, 2H), 5.73 (s, 2H), 5.16 (dd, J = 8.9, 6.5 Hz, 1H), 5.07 (q, J = 7.6 Hz, 1H), 4.30 (t, J = 8.8 Hz, 1H), 4.20 (t, J = 8.8 Hz, 1H), 4.12 (dd, J = 11.6, 7.4 Hz, 1H), 3.95-3.87 (m, 1H), 3.90 (s, 3H), 3.62-3.35 (m, 3H), 3.05 (dd, J = 13.7, 3.4 Hz, 1H), 2.57-2.46 (m, 1H), 2.29 (s, 3H), 2.07 (s, 3H), 1.41 (d, J = 6.4 Hz, 3H)	13C NMR (CDCl ₃) 8 171.73, 170.26, 163.21, 160.23, 156.98, 145.80, 143.97, 142.05, 135.80, 134.96, 132.65, 132.24, 130.64, 130.18, 129.36, 127.02, 115.14, 109.78, 89.38, 81.97, 75.40, 72.37, 71.38, 56.22, 51.77, 46.12, 32.42, 20.88, 20.44, 18.94
F114	41-45	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₈ H ₄₀ N ₂ O ₁₀ , 564.2683; found, 564.2687	³ H NMR (CDCl ₃) & 8.47 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.78-5.68 (m, 2H), 5.11 (q, J = 7.1 Hz, 1H), 5.02 (dd, J = 9.3, 6.4 Hz, 1H), 4.80 (t, J = 9.3 Hz, 1H), 4.10 (dd, J = 11.7, 7.3 Hz, 1H), 3.91 (s, 3H), 3.73 (d, J = 9.7 Hz, 1H), 3.67-3.53 (m, 2H), 2.59 (hept, J = 6.7 Hz, 1H), 2.07 (s, 3H), 1.93-1.67 (m, 4H), 1.31 (d, J = 6.4 Hz, 3H), 1.20 (d, J = 7.0 Hz, 6H), 1.14-0.91 (m, 4H)	13C NMR (CDCl ₃) 8 176.19, 171.63, 170.26, 163.19, 160.22, 145.77, 144.00, 142.10, 109.73, 89.42, 74.33, 73.88, 72.77, 56.20, 52.05, 43.59, 37.20, 35.04, 34.26, 33.63, 32.13, 25.02, 20.86, 18.97, 18.33

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F115	_	_	HRMS-ESI (m/z) [M]* calcd for C ₂₈ H ₄₂ N ₂ O ₉ , 550.2890; found, 550.2877	¹ H NMR (CDCl ₃) δ 8.46 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 5.4 Hz, 1H), 6.95 (d, J = 5.4 Hz, 1H), 5.77-5.69 (m, 2H), 5.03 (q, J = 7.1 Hz, 1H), 4.95 (dd, J = 9.1, 6.4 Hz, 1H), 4.08 (dd, J = 11.7, 7.2 Hz, 1H), 3.91 (s, 3H), 3.63 (d, J = 10.6 Hz, 1H), 3.59-3.48 (m, 2H), 3.37 (dd, J = 8.3, 6.2 Hz, 1H), 3.24 (dd, J = 8.2, 6.7 Hz, 1H), 2.97 (t, J = 9.0 Hz, 1H), 2.07 (s, 3H) 1.93-1.70 (m, 4H), 1.70-1.48 (m, 6H), 1.45 (d, J = 6.4 Hz, 3H), 1.16-1.02 (m, 3H), 0.92 (dd, J = 6.7, 4.5 Hz, 6H)	13C NMR (CDCl ₃) 8 171.69, 170.25, 163.18, 160.20, 145.78, 142.23, 137.51, 131.24, 109.69, 89.43, 84.91, 74.23, 72.74, 56.19, 52.07, 44.74, 37.39, 34.97, 33.88, 32.02, 29.14, 25.09, 20.87, 19.53, 18.86
F116	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₉ H ₄₄ N ₂ O ₉ , 564.3047; found, 564.3059	¹ H NMR (CDCl ₃) δ 8.46 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 6.96 (d, J = 5.4 Hz, 1H), 5.76-5.69 (m, 2H), 5.03 (q, J = 7.1 Hz, 1H), 4.94 (dd, J = 9.1, 6.4 Hz, 1H), 4.08 (dd, J = 11.7, 7.2 Hz, 1H), 3.91 (s, 3H), 3.67-3.42 (m, 5H), 2.98 (t, J = 9.0 Hz, 1H), 2.07 (s, 3H), 1.94-1.84 (m, 2H), 1.82-1.70 (m, 2H), 1.68-1.48 (m, 7H), 1.46 (d, J = 6.4 Hz, 3H), 1.39-1.21 (m, 5H), 1.17-1.01 (m, 2H), 0.94-0.86 (m, 3H)	¹³ C NMR (CDCl ₃) 8 171.68, 170.24, 163.18, 160.19, 145.78, 143.91, 142.19, 109.70, 89.40, 85.24, 75.84, 74.23, 72.72, 56.19, 52.04, 44.72, 37.38, 35.10, 33.85, 32.04, 29.94, 28.36, 25.08, 22.55, 20.86, 18.81, 14.00
F117	_	_	HRMS-ESI (m/z) [M + Na] ⁺ calcd for C ₃₀ H ₄₀ N ₂ O ₉ Na, 595.2626; found, 595.2620	¹ H NMR (CDCl ₃) δ 8.39 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.09 (m, 4H), 6.94 (d, J = 5.4 Hz, 1H), 5.72 (s, 2H), 5.00 (m, 2H), 4.01 (dd, J = 11.6, 7.4 Hz, 1H), 3.90 (s, 3H), 3.41 (m, 5H), 3.12 (m, 2H), 2.31 (s, 3H), 2.26 (d, J = 13.4 Hz, 1H), 2.05 (s, 3H), 1.89 (dd, J = 13.3, 6.6 Hz, 2H), 1.49 (d, J = 6.4 Hz, 3H),	13°C NMR (CDCl ₃) 8 171.78, 170.26, 163.15, 160.18, 145.76, 143.91, 142.14, 136.82, 135.53, 129.11, 129.05, 109.68, 89.40, 84.58, 79.17, 75.72, 72.33, 72.26, 56.18, 51.82, 47.44, 34.61, 29.18, 21.01, 20.87, 19.49, 18.84
F118	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₂ H ₄₀ N ₂ O ₁₀ , 612.2683; found, 612.2705	0.96 (d, J = 6.7 Hz, 6H) ¹ H NMR (CDCl ₃) & 8.56 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 7.32-7.24 (m, 2H), 7.23-7.10 (m, 3H), 6.95 (d, J = 5.4 Hz, 1H), 5.81-5.72 (m, 2H), 5.18-5.08 (m, 1H), 5.08-4.98 (m, 1H), 4.94 (t, J = 9.3 Hz, 1H), 4.17-4.06 (m, 1H), 3.90 (s, 3H), 3.88-3.80 (m, 1H), 3.74-3.62 (m, 2H), 2.79-2.65 (m, 1H), 1.90-1.79 (m, 1H), 1.66-1.58 (m, 2H), 1.90-1.79 (m, 1H), 1.56-1.45 (m, 1H), 1.33 (d, J = 6.2 Hz, 3H), 1.15 (d, J = 7.0 Hz, 6H), 1.04-0.97 (m, 2H), 0.94-0.86 (m, 2H)	19.49, 18.34 13C NMR (CDCl ₃) 8 176.26, 174.16, 171.45, 163.19, 160.22, 145.65, 144.23, 141.77, 128.39, 128.32, 125.92, 109.68, 89.78, 76.27, 74.47, 74.32, 73.16, 56.16, 52.17, 43.88, 33.86, 32.47, 31.32, 18.68, 18.30, 12.87, 8.54
F119	57-60	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₁ H ₃₈ Cl ₂ N ₂ O ₁₀ , 668.1904; found, 668.1908	¹ H NMR (CDCl ₃) & 8.46 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 5.3 Hz, 1H), 7.36 (d, J = 1.9 Hz, 1H), 7.36 (d, J = 1.9 Hz, 1H), 7.25-7.07 (m, 2H), 6.94 (d, J = 5.4 Hz, 1H), 5.84-5.70 (m, 2H), 5.18-4.86 (m, 3H), 4.09 (dd, J = 11.6, 7.4 Hz, 1H), 3.89 (s, 3H), 3.62-3.32 (m, 3H), 2.80 (dd, J = 13.9, 3.6 Hz, 1H), 2.70-2.39 (m, 3H), 2.27-2.08 (m, 1H), 1.35 (d, J = 6.3 Hz, 3H), 1.23 (d, J = 7.0 Hz, 6H), 1.14 (d, J = 7.0 Hz, 6H)	

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F120	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₁ H ₃₉ F ₃ N ₂ O ₁₀ , 656.2557; found, 656.2569	¹ H NMR (CDCl ₃) & 8.41 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.61-7.50 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.80 (s, 2H), 5.04-4.95 (m, 2H), 4.08 (s, 2H), 4.03 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.66 (dt, J = 8.6, 6.6 Hz, 1H), 3.63-3.47 (m, 3H), 3.47-3.36 (m, 3H), 3.23-3.12 (m, 2H), 2.43 (dd, J = 13.7, 11.7 Hz, 1H), 2.01-1.90 (m, 1H), 1.69-1.58 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.21 (t, J = 7.4 Hz, 3H)	¹⁹ F NMR (CDCl ₃) δ -62.35
F121	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₀ H ₄₄ N ₂ O ₁₁ , 608.2945; found, 608.2950	¹ H NMR (CDCl ₃) & 8.48 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 5.4 Hz, 1H), 6.97 (d, J = 5.4 Hz, 1H), 6.97 (d, J = 5.4 Hz, 1H), 5.81 (s, 2H), 5.12-4.98 (m, 2H), 4.81 (t, J = 9.3 Hz, 1H), 4.10 (s, 3H), 3.91 (s, 3H), 3.76-3.56 (m, 6H), 2.58 (h, J = 7.0 Hz, 1H), 1.93-1.68 (m, 4H), 1.62-1.46 (m, 4H), 1.31 (d, J = 6.4 Hz, 3H), 1.25-1.17 (m, 9H), 1.12-0.94 (m, 3H)	¹³ C NMR (CDCl ₃) δ 176.17, 171.61, 170.04, 163.14, 160.13, 145.81, 143.93, 141.93, 109.84, 89.39, 74.31, 73.85, 72.71, 67.77, 67.17, 56.23, 52.01, 43.55, 37.19, 35.02, 34.25, 33.61, 32.12, 25.00, 19.02, 18.31, 14.99
F122	_	_	HRMS-ESI (m/z) [M] $^+$ calcd for C ₃₂ H ₄₂ Cl ₂ N ₂ O ₁₀ , 684.2217; found, 684.2232	¹ H NMR (CDCl ₃) & 8.42 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 5.4 Hz, 1H), 7.36 (s, 1H), 7.36 (s, 1H), 7.26-7.12 (m, 2H), 6.95 (d, J = 5.4 Hz, 1H), 5.80 (s, 2H), 5.08-4.91 (m, 2H), 4.09 (s, 2H), 4.05 (dd, J = 11.7, 7.3 Hz, 1H), 3.90 (s, 3H), 3.76-3.64 (m, 1H), 3.63-3.54 (m, 3H), 3.46-3.38 (m, 3H), 3.22-3.13 (m, 2H), 2.56 (dd, J = 13.6, 12.2 Hz, 1H), 2.08-1.95 (m, 1H), 1.65-1.56 (m, 2H), 1.50 (d, J = 6.4 Hz, 3H), 1.38-1.31 (m, 3H), 1.28-1.21 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H)	13°C NMR (CDCl ₃) δ 171.62, 170.01, 163.12, 160.10, 145.82, 143.86, 141.95, 136.17, 135.01, 132.51, 132.13, 129.31, 127.05, 109.83, 89.36, 85.20, 75.62, 73.28, 72.49, 71.95, 67.77, 67.16, 56.23, 51.83, 45.85, 32.19, 29.95, 28.31, 22.56, 18.71, 15.00, 14.00
F123	96-99	_	HRMS-ESI (m/z) $[M]^+$ calcd for $C_{31}H_{40}Cl_2N_2O_9$, 654.2111; found, 654.2141	³ H NMR (CDCl ₃) & 8.55 (d, J = 7.7 Hz, 1H), 8.31 (d, J = 5.4 Hz, 1H), 7.36 (s, 1H), 7.36 (s, 1H), 7.25-7.12 (m, 2H), 6.99 (d, J = 5.5 Hz, 1H), 5.08-4.89 (m, 2H), 4.02 (dd, J = 11.7, 7.3 Hz, 1H), 3.88 (s, 3H), 3.81 (t, J = 6.6 Hz, 2H), 3.72-3.61 (m, 2H), 3.61-3.49 (m, 1H), 3.46-3.32 (m, 3H), 3.41 (s, 3H), 3.20-3.08 (m, 2H), 2.97 (t, J = 6.6 Hz, 2H), 2.59-2.48 (m, 1H), 2.05-1.95 (m, 1H), 1.65-1.54 (m, 2H), 1.49 (d, J = 6.4 Hz, 3H), 1.38-1.31 (m, 3H), 0.90 (t, J = 7.1 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 171.57, 169.34, 162.64, 159.42, 146.81, 141.13, 137.35, 136.16, 135.02, 132.53, 132.12, 129.33, 127.07, 109.93, 85.20, 75.61, 73.24, 72.45, 71.84, 67.56, 58.77, 56.33, 51.58, 34.60, 32.19, 29.96, 28.32, 22.57, 18.71, 14.01
F124	_	_	ESIMS m/z 584 ([M + Na]*)	¹ H NMR (CDCl ₃) & 7.31-7.22 (m, 2H), 7.21-7.12 (m, 3H), 5.06 (app t, J = 7.4 Hz, 1H), 4.84 (dq, J = 8.3, 6.5 Hz, 1H), 4.19 (dd, J = 11.8, 7.3 Hz, 1H), 4.04-3.91 (m, 2H), 3.66 (d, J = 4.1 Hz, 2H), 3.22 (app t, J = 7.7 Hz, 1H), 2.76 (ddd, J = 13.6, 10.8, 4.8 Hz, 1H), 2.59 (ddd, J = 13.7, 10.3, 6.1 Hz, 1H), 2.04-1.92 (m, 1H), 1.77-1.46 (m, 28H), 1.43 (d, J = 6.5 Hz, 3H)	¹³ C NMR (CDCl ₃) δ 169.88, 152.65, 128.35, 128.30, 125.75, 83.13, 82.95, 82.77, 75.93, 75.32, 71.84, 57.87, 45.13, 34.03, 32.59, 32.54, 30.65, 27.97, 27.94, 23.06, 23.04, 19.10

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F125	_		ESIMS m/z 626 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) δ 7.32-7.23 (m, 2H), 7.23-7.13 (m, 3H), 5.15 (dd, J = 8.4, 6.1 Hz, 1H), 4.91-4.79 (m, 1H), 4.23 (dd, J = 11.9, 6.2 Hz, 1H), 3.94 (dd, J = 11.9, 8.5 Hz, 1H), 3.73 (dd, J = 10.9, 1.6 Hz, 1H), 3.61 (dd, J = 11.0, 6.2 Hz, 1H), 3.57-3.41 (m, 2H), 3.10 (app t, J = 8.6 Hz, 1H), 2.78 (ddd, J = 13.8, 10.3, 4.8 Hz, 1H), 2.59-2.49 (m, 1H), 2.20-2.07 (m, 2H), 1.89-1.71 (m, 4H), 1.61-1.49 (m, 19H), 1.41 (d, J = 6.4 Hz,	¹⁹ F NMR (CDCl ₃) δ –66.40
F126		_	ESIMS m/z 586 ([M + Na] ⁺)	3H) ¹ H NMR (CDCl ₃) 8 7.31-7.22 (m, 2H), 7.21-7.12 (m, 3H), 5.16 (dd, J = 8.5, 5.8 Hz, 1H), 4.84 (dq, J = 9.0, 6.3 Hz, 1H), 4.22 (dd, J = 11.9, 5.8 Hz, 1H), 3.93 (dd, J = 11.9, 5.8 Hz, 1H), 3.93 (dd, J = 11.9, 6.4 Hz, 1H), 3.76 (dd, J = 10.9, 6.4 Hz, 1H), 3.56 (dd, J = 10.9, 6.4 Hz, 1H), 3.53-3.37 (m, 2H), 3.07 (app t, J = 8.9 Hz, 1H), 2.76 (ddd, J = 13.6, 10.9, 4.7 Hz, 1H), 2.55 (ddd, J = 13.7, 10.4, 6.3 Hz, 1H), 1.93 (dddd, J = 13.9, 10.9, 6.4, 3.2 Hz, 1H), 1.79-1.67 (m, 1H), 1.51 (s, 21H), 1.43 (d, J = 6.3 Hz, 3H), 1.35-1.23 (m, 4H),	¹³ C NMR (CDCl ₃) δ 169.70, 152.67, 142.28, 128.36, 128.34, 125.79, 84.57, 82.96, 75.41, 75.21, 71.87, 71.68, 57.77, 44.75, 33.31, 31.00, 29.97, 28.38, 27.95, 22.59, 18.98, 14.02
F127	_		ESIMS m/z 573 ([M + Na] ⁺)	0.96-0.82 (m, 3H) ¹ H NMR (CDCl ₃) δ 7.31-7.22 (m, 2H), 7.21-7.13 (m, 3H), 5.16 (dd, J = 8.5, 5.8 Hz, 1H), 4.90-4.81 (m, 1H), 4.22 (dd, J = 11.9, 5.9 Hz, 1H), 3.93 (dd, J = 11.9, 8.5 Hz, 1H), 3.80-3.72 (m, 1H), 3.57 (dd, J = 10.9, 6.4 Hz, 1H), 3.30-3.16 (m, 2H), 3.07 (app t, J = 8.9 Hz, 1H), 2.84-2.67 (m, 1H), 2.61-2.45 (m, 1H), 1.93 (dddd, J = 13.8, 11.0, 6.5, 3.2 Hz, 1H), 1.85-1.68 (m, 2H), 1.54-1.49 (m, 19H), 1.43 (d, J = 6.4 Hz, 3H),	¹³ C NMR (CDCl ₃) 8 169.71, 152.68, 142.27, 128.36, 125.79, 84.24, 82.95, 78.20, 75.35, 75.13, 71.68, 57.77, 44.70, 33.31, 30.87, 29.08, 27.95, 19.46, 19.44, 19.03
F128	130-132	_	ESIMS m/z 622 ([M + Na]*)	0.89 (d, J = 6.7 Hz, 6H) H NMR (CDCl ₃) & 8.01-7.93 (m, 1H), 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.54-7.41 (m, 2H), 7.37 (dd, J = 8.2, 7.0 Hz, 1H), 7.28 (dd, J = 7.0, 1.3 Hz, 1H), 5.20 (dd, J = 8.7, 5.7 Hz, 1H), 5.11 (app t, J = 9.3 Hz, 1H), 5.11 (app t, J = 9.3 Hz, 1H), 5.08-4.97 (m, 1H), 4.06 (dd, J = 11.8, 5.7 Hz, 1H), 3.86 (dd, J = 11.9, 8.7 Hz, 1H), 3.66 (d, J = 11.0 Hz, 1H), 3.50 (dd, J = 14.0, 3.1 Hz, 1H), 3.23 (dd, J = 14.0, 3.1 Hz, 1H), 2.74-2.55 (m, 2H), 2.37-2.20 (m, 1H), 1.42 (s, 18H), 1.37 (d, J = 6.2 Hz, 3H), 1.26 (app dd, J = 7.0, 4.4 Hz, 6H)	
F129	_	_	ESIMS m/z 662 $([M + Na]^+)$	¹ H NMR (CDCl ₃) δ 8.13-8.06 (m, 1H), 7.84 (dd, J = 7.8, 1.7 Hz, 1H), 7.72 (dd, J = 8.1, 1.3 Hz, 1H), 7.54-7.41 (m, 2H), 7.38 (dd, J = 8.1, 6.9 Hz,	¹⁹ F NMR (CDCl ₃) δ -66.36

Analytical Data					
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
				1H), 7.32 (dd, J = 7.1, 1.4 Hz, 1H), 5.12 (dd, J = 8.5, 6.8 Hz, 1H), 4.87 (dq, J = 9.0, 6.4 Hz, 1H), 4.04 (dd, J = 11.7, 6.8 Hz, 1H), 3.88 (dd, J = 11.7, 8.6 Hz, 1H), 3.86 (dd, J = 11.7, 8.6 Hz, 1H), 3.77-3.66 (m, 1H), 3.56 (dd, J = 13.5, 3.0 Hz, 1H), 3.48-3.41 (m, 2H), 3.28 (app t, J = 8.9 Hz, 1H), 2.76 (app t, J = 12.4 Hz, 1H), 2.34-2.22 (m, 2H), 2.15-2.04 (m, 1H), 2.00-1.86 (m, 2H), 1.51 (d, J = 6.4 Hz, 3H),	
F130	_		ESIMS m/z 622 ([M + H] ⁺)	1.43 (s, 18H) ¹ H NMR (CDCl ₃) & 8.21-8.13 (m, 1H), 7.87-7.79 (m, 1H), 7.71 (dd, J = 8.0, 1.3 Hz, 1H), 7.54-7.41 (m, 2H), 7.42-7.28 (m, 2H), 5.12 (dd, J = 8.6, 6.7 Hz, 1H), 4.85 (dq, J = 9.2, 6.3 Hz, 1H), 4.03 (dd, J = 11.7, 6.7 Hz, 1H), 3.92-3.73 (m, 2H), 3.73-3.63 (m, 2H), 3.51-3.37 (m, 2H), 3.24 (app t, J = 9.1 Hz, 1H), 2.78-2.65 (m, 1H), 2.13-2.02 (m, 1H), 1.77-1.64 (m, 2H),	
F131	_	_	ESIMS m/z 642 ([M + Na]*)	1.57-1.49 (m, 4H), 1.42 (m, 21H), 0.91 (t, J = 7.1 Hz, 3H) ¹ H NMR (CDCl ₃) 8 8.11-8.03 (m, 1H), 7.81 (dd, J = 7.9, 1.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.54-7.39 (m, 2H), 7.39-7.30 (m, 1H), 7.27 (dd, J = 7.0, 1.4 Hz, 1H), 7.16-7.08 (m, 2H), 7.39-6.95 (m, 2H), 5.17 (dd, J = 8.7, 6.5 Hz, 1H), 5.09-4.99 (m, 1H), 4.40 (app t, J = 9.0 Hz, 1H), 4.08 (dd, J = 11.7, 6.6 Hz, 1H), 3.91 (dd, J = 11.7, 8.7 Hz, 1H), 3.63-3.48 (m, 3H), 2.69-2.64 (m, 1H), 2.37-2.26 (m, 4H), 1.47-1.38 (m,	¹³ C NMR (CDCl ₃) 8 169.99, 157.28, 152.59, 135.48, 133.98, 131.99, 130.55, 130.22, 128.67, 127.79, 127.09, 125.91, 125.43, 125.14, 124.04, 115.18, 83.05, 82.23, 75.40, 72.08, 70.65, 57.24, 46.50, 32.68, 27.84, 20.43, 19.10
F132	49-55	_	ESIMS m/z 620 ([M + Na]*)	21H) ¹ H NMR (CDCl ₃) & 8.09 (d, J = 8.3 Hz, 1H), 7.82 (dd, J = 8.1, 1.5 Hz, 1H), 7.74-7.67 (m, 1H), 7.54-7.41 (m, 2H), 7.40-7.31 (m, 2H), 5.05 (app t, J = 7.7 Hz, 1H), 4.90-4.79 (m, 1H), 4.21-4.12 (m, 1H), 3.94 (dd, J = 11.7, 7.5 Hz, 1H), 3.88 (dd, J = 11.7, 8.0 Hz, 1H), 3.73 (dd, J = 13.6, 2.9 Hz, 1H), 3.53-3.35 (m, 3H), 2.71 (app t, J = 12.8 Hz, 1H), 2.07-1.96 (m, 1H), 1.90-1.70 (m, 6H),	
F133	57-63	_	ESIMS m/z 608 ([M + Na]*)	1.63-1.49 (m, 5H), 1.38 (s, 18H) ¹ H NMR (CDCl ₃) 8 8.17 (dd, J = 8.0, 1.6 Hz, 1H), 7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.51-7.40 (m, 2H), 7.37 (dd, J = 8.1, 6.9 Hz, 1H), 7.32 (dd, J = 7.0, 1.4 Hz, 1H), 5.12 (dd, J = 8.6, 6.5 Hz, 1H), 4.93-4.83 (m, 1H), 4.02 (dd, J = 11.7, 6.5 Hz, 1H), 3.86 (dd, J = 11.8, 8.6 Hz, 1H), 3.68 (dd, J = 13.6, 2.8 Hz, 1H), 3.59-3.36 (m, 4H), 3.23 (app t, J = 9.1 Hz, 1H), 2.74-2.63 (m, 1H),	

	Analytical Data							
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR			
F134	100-103	_	ESIMS	2.14-2.05 (m, 1H), 2.05-1.94 (m, 1H), 1.53 (d, J = 6.4 Hz, 3H), 1.41 (s, 18H), 1.01 (app dd, J = 6.7, 2.1 Hz, 6H) H NMR (CDCl ₃) 8 7.08 (app	_			
			m/z 586 ([M + Na] ⁺)	s, 4H), 5.12 (dd, J = 8.6, 6.3 Hz, 1H), 4.91-4.81 (m, 1H), 4.07 (dd, J = 11.8, 6.3 Hz, 1H), 3.83 (dd, J = 11.8, 8.6 Hz, 1H), 3.68-3.58 (m, 1H), 3.57-3.45 (m, 2H), 3.36 (dd, J = 10.9, 6.2 Hz, 1H), 3.18-3.02 (m, 2H), 2.37-2.26 (m, 4H), 2.00-1.89 (m, 1H), 1.64-1.55 (m, 2H), 1.39-1.27 (m, 4H), 0.94-0.85 (m, 3H)				
F135	_	_	ESIMS m/z 586 ([M + Na]*)	¹ H NMR (CDCl ₃) & 7.07 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 5.19 (dd, J = 8.7, 5.8 Hz, 1H), 5.02-4.90 (m, 2H), 4.12 (dd, J = 11.9, 5.8 Hz, 1H), 3.86 (dd, J = 11.9, 8.7 Hz, 1H), 3.64 (d, J = 10.6 Hz, 1H), 3.45 (dd, J = 10.8, 6.7 Hz, 1H), 2.67 (dd, J = 13.9, 3.7 Hz, 1H), 2.61-2.51 (m, 1H), 2.32-2.20 (m, 4H), 2.16-2.04 (m, 1H), 1.49 (s, 18H), 1.32 (d, J = 5.5 Hz, 3H), 1.19 (app dd, J = 7.0, 1.5 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 176.14, 169.82, 152.55, 135.97, 135.63, 129.08, 128.92, 82.95, 76.78, 73.88, 73.23, 71.24, 57.60, 45.58, 34.43, 34.15, 27.89, 20.96, 18.97, 18.95, 18.38			
F136	131-133	_	ESIMS m/z 588 ([M + Na]*)	¹ H NMR (CDCl ₃) & 7.15-7.04 (m, 2H), 7.01-6.92 (m, 2H), 5.19 (dd, J = 8.7, 5.6 Hz, 1H), 5.02-4.89 (m, 2H), 4.13 (dd, J = 11.9, 5.7 Hz, 1H), 3.87 (dd, J = 11.9, 8.7 Hz, 1H), 3.64 (d, J = 10.8 Hz, 1H), 3.44 (dd, J = 10.9, 6.7 Hz, 1H), 2.71 (dd, J = 14.1, 4.1 Hz, 1H), 2.30 (dd, J = 14.2, 10.8 Hz, 1H), 1.66-1.57 (m, 1H), 1.49 (s, 18H), 1.33 (d, J = 5.6 Hz, 3H), 1.06-0.96 (m, 2H), 0.95-0.85 (m, 2H)	_			
F137	_		ESIMS m/z 590 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) & 7.13-7.05 (m, 2H), 7.00-6.91 (m, 2H), 5.18 (dd, J = 8.7, 5.7 Hz, 1H), 5.02-4.89 (m, 2H), 4.13 (dd, J = 11.9, 5.8 Hz, 1H), 3.87 (dd, J = 11.9, 8.6 Hz, 1H), 3.62 (d, J = 10.8 Hz, 1H), 3.45 (dd, J = 10.8 Hz, 1H), 3.45 (dd, J = 14.0, 3.8 Hz, 1H), 2.66 (dd, J = 14.0, 3.8 Hz, 1H), 2.57 (app p, J = 7.0 Hz, 1H), 2.29 (dd, J = 14.1, 11.1 Hz, 1H), 2.11-2.01 (m, 1H), 1.49 (s, 18H), 1.32 (d, J = 5.6 Hz, 3H), 1.20 (app dd, J = 7.0, 1.8 Hz, 6H)	¹³ C NMR (CDCl ₃) δ 176.22, 169.76, 161.45 (d, JCF = 244.4 Hz), 152.60, 134.77 (d, JCF = 3.3 Hz), 130.45 (d, JCF = 7.8 Hz), 115.21 (d, JCF = 21.1 Hz), 83.07, 76.72, 73.81, 73.08, 71.36, 57.58, 45.72, 34.18, 34.11, 27.91, 18.99, 18.96, 18.38			
F138	_	_	ESIMS m/z 585 ([M + Na]*)	¹ H NMR (CDCl ₃) δ 7.30-7.23 (m, 2H), 7.20-7.14 (m, 1H), 7.14-7.10 (m, 2H), 5.23 (dd, J = 8.8, 5.0 Hz, 1H), 4.97-4.88 (m, 2H), 4.26 (dd, J = 12.0, 5.0 Hz, 1H), 3.95 (dd, J = 12.0, 8.8 Hz, 1H), 3.89 (dd, J = 10.8, 1.3 Hz, 1H), 3.61 (dd, J = 10.8, 7.2 Hz, 1H), 2.74-2.63 (m, 1H), 2.51-2.40 (m, 1H), 1.88 (q, J = 9.2, 8.0 Hz, 1H), 1.66-1.45 (m, 21H), 1.30 (d, J = 5.8 Hz, 3H),	13C NMR (CDCl ₃) & 174.15, 169.50, 152.65, 141.92, 129.08, 128.37, 128.29, 125.87, 83.08, 76.37, 74.11, 72.11, 57.93, 43.64, 32.43, 31.39, 27.96, 18.41, 12.90, 8.50			

	Analytical Data						
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR		
F139	_	Film) 2979, 2921, 1742,	HRMS-ESI (m/z) [M] ⁺ calcd for C ₃₃ H ₄₅ NO ₈ , 583.3145;	1.03-0.97 (m, 2H), 0.93-0.85 (m, 2H) ¹ H NMR (CDCl ₃) & 7.23-7.16 (m, 2H), 7.16-7.09 (m, 1H), 7.09-7.03 (m, 2H), 7.01-6.96 (m, 2H), 6.83-6.78 (m, 2H), 5.20 (dd, J = 8.5, 5.9 Hz, 1H), 5.05-4.94 (m, 1H),	_		
		1507,	found, 583.3159	1.89-1.77 (m, 1H), 4.27 (dd, J = 11.9, 6.0 Hz, 1H), 4.20 (t, J = 8.8 Hz, 1H), 4.04-3.94 (m, 1H), 3.83 (d, J = 10.8 Hz, 1H), 3.72-3.63 (m, 1H), 2.70-2.60 (m, 1H), 2.57-2.44 (m, 1H), 2.28 (s, 3H), 2.00-1.90 (m, 1H), 1.56-1.48 (m,			
F140	_	_	ESIMS m/z 631 $([M + Na]^+)$	2.00-1.30 (iii, 111), 1.30-1.45 (iii, 19H), 1.35 (d, J = 6.5 Hz, 3H) ¹ H NMR (CDCl ₃) 8 7.17-7.09 (m, 2H), 7.02-6.91 (m, 2H), 5.11 (dd, J = 8.4, 6.6 Hz, 1H), 4.94-4.84 (m, 1H), 4.09 (dd, J = 11.8, 6.6 Hz, 1H), 3.92-3.81 (m, 1H), 3.74-3.65 (m, 1H), 3.60-3.53 (m, 1H), 3.53-3.44 (m, 1H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.17 (t, J = 8.6 Hz, 19H), 3.43-3.33 (m, 1H), 3.43-3.33 (m,	¹³ C NMR (CDCl ₃) δ 169.88, 161.42 (d, J = 244.2 Hz), 152.64, 135.32 (d, J = 3.3 Hz), 130.50 (d, J = 7.8 Hz), 127.09 (q, J = 275.9 Hz), 115.17 (d, J = 21.2 Hz), 84.96, 83.07, 74.85, 72.42, 71.03, 70.14,		
F141	_	_	ESIMS m/z 589	1H), 2.97 (dd, J = 13.7, 3.7 Hz, 1H), 2.47-2.34 (m, 1H), 2.27-2.13 (m, 2H), 1.97-1.89 (m, 1H), 1.89-1.79 (m, 2H), 1.49 (s, 18H), 1.46 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 7.18-7.10 (m, 2H), 7.02-6.87 (m,	57.38, 47.05, 34.28, 30.74 (q, J = 29.3 Hz), 27.91, 22.99, 18.92 13C NMR (CDCl ₃) δ 170.15, 161.33 (d, J = 243.7 Hz),		
			([M + Na] ⁺)	2H), 5.03 (t, J = 7.7 Hz, 1H), 4.91-4.80 (m, 1H), 4.07-3.96 (m, 2H), 3.94-3.83 (m, 1H), 3.48-3.37 (m, 2H), 3.31 (t, J = 8.0 Hz, 1H), 3.08 (d, J = 3.7 Hz, 1H), 2.41-2.29 (m, 1H), 1.87-1.58 (m, 8H),	152.60, 136.06, 130.49 (d, J = 7.6 Hz), 115.09 (d, J = 21.0 Hz), 83.18, 83.00, 75.90, 72.86, 71.09, 57.51, 47.32, 34.10, 32.67, 32.60, 27.90, 23.03, 19.02		
F142	_	_	ESIMS m/z 590 ([M + Na]*)	1.48 (s, 22H) ¹ H NMR (CDCl ₃) δ 7.18-7.11 (m, 2H), 7.00-6.91 (m, 2H), 5.12 (dd, J = 8.6, 6.3 Hz, 1H), 4.90-4.81 (m, 1H), 4.13-4.04 (m, 1H), 3.85 (dd, J = 11.8, 8.6 Hz, 1H), 3.63 (dt, J = 8.7, 6.6 Hz, 1H),	¹³ C NMR (CDCl ₃) δ 169.91, 161.36 (d, J = 243.6 Hz), 152.62, 135.67 (d, J = 3.2 Hz), 130.56 (d, J = 7.8 Hz), 115.08 (d, J = 21.1 Hz), 84.78,		
F143	_	_	ESIMS m/z 479	3.56-3.46 (m, 2H), 3.40-3.30 (m, 1H), 3.17-3.02 (m, 2H), 2.34 (dd, J = 13.9, 11.4 Hz, 1H), 1.97-1.82 (m, 1H), 1.65-1.54 (m, 2H), 1.48 (s, 21H), 1.39-1.29 (m, 4H), 0.94-0.86 (m, 3H) H NMR (CDCl ₃) & 7.19-7.08 (m, 2H), 7.03-6.91 (m,	83.01, 75.36, 72.74, 72.43, 71.00, 57.43, 47.15, 34.28, 29.98, 28.33, 27.91, 22.57, 18.88, 14.00		
			([M + Na] ⁺)	2H), 5.12 (d, J = 8.3 Hz, 1H), 4.95 (dq, J = 9.2, 6.4 Hz, 1H), 4.59 (q, J = 7.5 Hz, 1H), 3.90 (dd, J = 11.7, 7.2 Hz, 1H), 3.50-3.20 (m, 5H), 3.16-3.01 (m, 2H), 2.28 (t, J = 12.8 Hz, 1H), 1.94-1.76 (m, 2H), 1.48 (d, J = 6.4 Hz, 3H), 1.42 (s, 9H), 0.95 (d, J = 6.7 Hz,			
F144	_	_	ESIMS m/z 585 ([M + Na] ⁺)	6H) ¹ H NMR (CDCl ₃) & 7.08 (d, J = 7.9 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 5.18 (dd, J = 8.7, 5.6 Hz, 1H), 5.02-4.89 (m, 2H), 4.11 (dd, J = 11.9, 5.6 Hz, 1H), 3.85 (dd, J = 11.9, 8.8 Hz, 1H), 3.66 (d, J = 10.7 Hz, 1H), 3.43 (dd, J = 10.8, 6.9 Hz, 1H), 3.45 (dd, J = 10.8, 6.9 Hz, 1H), 3.47 (dd, J = 10.8, 6.9 Hz, 1H), 3.48 (dd, J = 10.8, 6.9 Hz, 1H), 3.48 (dd, J = 10.8, 6.9 Hz, 1H), 3.48 (dd, J = 10.8, 6.9 Hz, 1H), 3.49 (dd, J = 10.8, 6.9 Hz), 4.40 (dd, J = 10.8, 6.9	¹³ C NMR (CDCl ₃) δ 174.27, 169.80, 152.58, 136.04, 135.66, 129.08, 128.93, 83.06, 77.12, 74.03, 73.63, 71.40, 57.69, 45.52, 34.53, 27.93, 21.00, 18.37,		

Analytical Data						
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR	
				1H), 2.70 (dd, J = 14.0, 3.8 Hz, 1H), 2.31 (s, 3H), 2.25 (dd, J = 13.9, 11.0 Hz, 1H), 2.18-2.02 (m, 1H), 1.67-1.60 (m, 1H), 1.49 (s, 18H), 1.33 (d, J = 5.7 Hz, 3H), 1.07-0.99 (m, 2H), 0.92-0.85 (m, 2H)	12.90, 8.57, 8.56	
7145	_	_	ESIMS m/z 627 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) 8 7.14-7.03 (m, 4H), 5.11 (dd, J = 8.5, 6.5 Hz, 1H), 4.94-4.82 (m, 1H), 4.12-4.03 (m, 1H), 3.85 (dd, J = 11.8, 8.5 Hz, 1H), 3.73-3.63 (m, 1H), 3.61-3.47 (m, 2H), 3.45-3.35 (m, 1H), 3.17 (t, J = 8.8 Hz, 1H), 2.97 (dd, J = 13.7, 3.8 Hz, 1H), 2.42-2.32 (m, 1H), 2.32 (s, 3H), 2.25-2.13 (m, 2H), 2.02-1.91 (m, 1H), 1.87-1.78 (m, 2H), 1.48 (s, 18H),	¹³ C NMR (CDCl ₃) 8 169.95, 152.62, 136.54, 135.60, 129.08, 129.00, 127.11 (q, J = 276.1 Hz), 84.97, 83.04, 74.94, 72.74, 70.96, 69.97, 57.42, 46.79, 34.67, 30.77 (q, J = 29.0 Hz), 27.91, 29.96 (q, J = 3.0 Hz), 21.00, 18.94.	
F146	_	Film) 2979, 2931, 1742, 1705, 1491,	HRMS-ESI (m/z) [M]* calcd for C ₃₂ H ₄₃ NO ₈ , 569.2989; found, 569.3001	1.45 (d, J = 6.3 Hz, 3H) ¹ H NMR (CDCl ₃) δ 7.31-7.26 (m, 2H), 7.07-6.99 (m, 4H), 6.98-6.92 (m, 3H), 5.16 (dd, J = 8.5, 6.6 Hz, 1H), 5.10-4.99 (m, 1H), 4.30 (t, J = 8.7 Hz, 1H), 4.12 (dd, J = 11.8, 6.6 Hz, 1H), 3.90 (dd, J = 11.8, 8.6 Hz, 1H), 3.60 (d, J = 10.9 Hz, 1H), 3.57-3.46 (m, 1H), 2.97 (dd, J = 13.6, 3.3 Hz, 1H), 2.29 (m, 4H), 2.24-2.13 (m, 1H), 1.49 (s, 18H), 1.38 (d, J = 6.4 Hz, 3H)		
147	_	_	ESIMS m/z 585 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) & 7.08 (m, 4H), 5.03 (t, J = 7.7 Hz, 1H), 4.92-4.81 (m, 1H), 4.10-4.02 (m, 1H), 4.02-3.95 (m, 1H), 3.93-3.83 (m, 1H), 3.44 (d, J = 5.3 Hz, 2H), 3.30 (t, J = 8.1 Hz, 1H), 3.10 (dd, J = 13.7, 3.7 Hz, 1H), 2.31 (s, 4H), 1.92-1.81 (m, 1H), 1.81-1.64 (m, 5H), 1.47 (m, 24H)	¹³ C NMR (CDCl ₃) δ 170.22, 152.58, 137.28, 135.37, 129.03, 83.22, 83.16, 82.96, 75.97, 73.09, 71.04, 57.56, 47.11, 34.44, 32.70, 32.60, 27.90, 23.04, 23.02, 21.01, 19.05	
148	_	_	ESMIS m/z 638 ([M + Na]*)	¹ H NMR (CDCl ₃) & 7.53 (d, J = 8.0 Hz, 2H), 7.30-7.24 (m, 2H), 15.19 (dd, J = 8.7, 5.6 Hz, 1H), 5.01-4.88 (m, 2H), 4.14 (dd, J = 12.0, 5.7 Hz, 1H), 3.87 (dd, J = 12.0, 8.7 Hz, 1H), 3.62 (d, J = 11.0 Hz, 1H), 3.46 (dd, J = 10.9, 6.5 Hz, 1H), 2.78 (dd, J = 14.0, 4.6 Hz, 1H), 2.47-2.32 (m, 1H), 2.22-2.09 (m, 1H), 1.56-1.51 (m, 1H), 1.49 (s, 18H), 1.33 (d, J = 5.6 Hz, 3H), 1.02-0.95 (m, 2H), 0.93-0.82 (m, 2H)	¹⁹ F NMR (CDCl ₃) δ -62.4	
F149	_	_	ESIMS m/z 627 ([M + Na]*)	2H) MMR (CDCl ₃) & 7.53 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.12 (dd, J = 8.5, 6.4 Hz, 1H), 4.93-4.84 (m, 1H), 4.12-4.04 (m, 1H), 3.85 (dd, J = 11.8, 8.5 Hz, 1H), 3.51-3.40 (m, 2H), 3.40-3.25 (m, 2H), 3.19-3.09 (m, 2H), 2.44 (t, J = 12.7 Hz, 1H), 2.03-1.93 (m, 1H), 1.93-1.79 (m, 1H), 1.51-1.44 (m, 21H), 0.94 (dd, J = 6.7, 1.0 Hz, 6H)	$^{19} F$ NMR (CDCl ₃) δ –62.4	

218

				Analytical Data	
Cmpd No.	MP (° C.)	${\rm IR} \atop (cm^{-1})$	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F150	_	_	ESIMS m/z 639 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.04 (t, J = 7.7 Hz, 1H), 4.92-4.83 (m, 1H), 4.09-3.97 (m, 2H), 3.94-3.84 (m, 1H), 3.47-3.37 (m, 2H), 3.17 (dd, J = 13.9, 3.5 Hz, 1H), 2.47 (t, J = 12.8 Hz, 1H), 1.95-1.83 (m, 1H), 1.83-1.61 (m, 6H), 1.55-1.51 (m, 1H),	¹⁹ F NMR (CDCl ₃) δ –62.4
F151	_	_	ESIMS m/z 613 ([M + Na] ⁺)	1.51-1.45 (m, 22H) ¹ H NMR (CDCl ₃) & 7.58-7.48 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.12 (dd, J = 8.5, 6.3 Hz, 1H), 4.94-4.82 (m, 1H), 4.13-4.05 (m, 1H), 3.90-3.81 (m, 1H), 3.66-3.59 (m, 1H), 3.48 (dt, J = 8.6, 6.6 Hz, 2H), 3.40-3.31 (m, 1H), 3.20-3.10 (m, 2H), 2.45 (t, J = 12.6 Hz, 1H), 2.00 (dd, J = 9.0, 4.3 Hz, 1H), 1.65-1.54 (m, 2H), 1.55-1.42 (m, 21H), 1.65 (t, J,	¹⁹ F NMR (CDCl ₃) δ -62.3
F152	_	_	ESIMS m/z 641 ([M + Na] ⁺)	0.95 (t, J = 7.4 Hz, 3H) ¹ H NMR (CDCl ₃) 8 7.58-7.49 (m, 2H), 7.26 (d, J = 7.8 Hz, 2H), 5.19 (dd, J = 8.7, 5.8 Hz, 1H), 5.04-4.94 (m, 2H), 4.17-4.08 (m, 1H), 3.89 (dd, J = 11.9, 8.7 Hz, 1H), 3.64-3.55 (m, 1H), 3.50-3.42 (m, 1H), 2.74 (dd, J = 14.1, 4.0 Hz, 1H), 2.61-2.49 (m, 1H), 2.41 (dd, J = 14.0, 11.2 Hz, 1H), 2.19-2.09 (m, 1H), 1.49 (s, 18H), 1.33 (d, J = 5.8 Hz, 3H), 1.19 (app dd, J = 7.0, 2.6 Hz,	¹⁹ F NMR (CDCl ₃) δ –62.4
F153	_	_	ESIMS m/z 641 ([M + Na] ⁺)	6H) ¹ H NMR (CDCl ₃) δ 7.57-7.48 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.12 (dd, J = 8.5, 6.3 Hz, 1H), 4.93-4.84 (m, 1H), 4.08 (dd, J = 11.9, 6.4 Hz, 1H), 3.85 (dd, J = 11.8, 8.6 Hz, 1H), 3.57-3.44 (m, 2H), 3.36 (dd, J = 11.0, 5.9 Hz, 1H), 3.21-3.10 (m, 2H), 2.45 (t, J = 12.6 Hz, 1H), 2.04-1.89 (m, 1H), 1.64-1.53 (m, 2H), 1.53-1.42 (m, 21H), 1.41-1.27 (m, 4H), 1.94-0.82 (m, 3H)	¹⁹ F NMR (CDCl ₃) δ -62.3
F154	_	_	ESIMS m/z 551 ([M + Na] ⁺)	0.94-0.82 (m, 3H) ¹ H NMR (CDCl ₃) δ 5.11 (dd, J = 8.3, 6.7 Hz, 1H), 4.94-4.82 (m, 1H), 4.23-4.15 (m, 1H), 3.93 (dd, J = 11.9, 8.3 Hz, 1H), 3.75-3.59 (m, 2H), 3.37 (dd, J = 8.4, 6.4 Hz, 1H), 3.18 (dd, J = 8.4, 6.4 Hz, 1H), 3.11 (t, J = 8.5 Hz, 1H), 2.44-2.28 (m, 1H), 2.28-2.13 (m, 1H), 2.10-2.01 (m, 1H), 1.88-1.77 (m, 1H), 1.51 (s, 18H), 1.45 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H)	¹⁹ F NMR (CDCl ₃) δ -63.3
F155	_	_	ESIMS m/z 562 ([M + Na] ⁺)	0.91 (d, J = 6.6 Hz, 6H) ¹ H NMR (CDCl ₃) δ 5.04-4.96 (m, 1H), 4.89 (q, J = 6.8 Hz, 1H), 4.20-4.10 (m, 1H), 4.05-3.90 (m, 2H), 3.78-3.69 (m, 1H), 3.68-3.59 (m, 1H), 2.29-2.15 (m, 1H), 3.27 (t, J = 7.1 Hz, 1H), 2.52-2.35 (m, 1H), 2.03-1.94 (m, 1H),	¹⁹ F NMR (CDCl ₃) δ –63.7

220

	Analytical Data							
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR			
				1.78-1.61 (m, 5H), 1.59-1.48 (m, 21H), 1.44 (d, J = 6.6 Hz,				
F156	_	_	ESIMS m/z 539 ([M + Na] ⁺)	3H) ¹ H NMR (CDCl ₃) δ 5.14 (dd, J = 8.5, 5.7 Hz, 1H), 4.89-4.78 (m, 1H), 4.18 (dd, J = 11.9, 5.7 Hz, 1H), 3.89 (dd, J = 11.9, 8.5 Hz, 1H), 3.71-3.64 (m, 1H), 3.45 (dd, J = 10.9, 6.4 Hz, 1H), 3.31 (dd, J = 8.3, 6.5 Hz, 1H), 3.24 (dd, J = 8.3, 6.3 Hz, 1H), 3.02 (t, J = 8.9 Hz, 1H), 1.89-1.78 (m, 1H), 1.68-1.45 (m, 20H), 1.42 (d, J = 6.3 Hz, 3H), 1.35-1.05 (m, 4H), 0.91 (d, J = 6.7 Hz, 1.55 (m, 4H	¹³ C NMR (CDCl ₃) 8 169.75, 152.67, 84.31, 82.96, 78.41, 75.49, 71.64, 57.84, 45.24, 35.99, 29.12, 28.41, 27.94, 26.61, 22.75, 22.43, 19.49, 19.02			
E157			ECIMO	6H), 0.87 (app dd, J = 6.6, 2.6 Hz, 6H)	¹⁹ F NMR (CDCl ₃) δ –66.4			
F157	_	_	ESIMS m/z 593 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) & 5.14 (dd, J = 8.5, 5.9 Hz, 1H), 4.89-4.79 (m, 1H), 4.19 (dd, J = 11.9, 5.9 Hz, 1H), 3.90 (dd, J = 12.0, 8.5 Hz, 1H), 3.71-3.57 (m, 2H), 3.57-3.43 (m, 2H), 3.06 (t, J = 8.8 Hz, 1H), 2.26-2.12 (m, 2H), 1.86-1.76 (m, 2H), 1.65 (s, 2H), 1.51 (s, 18H), 1.41 (d, J = 6.3 Hz, 3H), 1.35-1.02 (m, 4H), 0.88 (dd, L = 6.4 0 Hz, 6H)	1 NVIK (CDC13) 0 -00.4			
F158	_	_	ESIMS m/z 550	J = 6.6, 4.0 Hz, 6H) ¹ H NMR (CDCl ₃) δ 5.22 (dd, J = 8.7, 4.8 Hz, 1H),	¹³ C NMR (CDCl ₃) δ 174.09, 169.53,			
			([M + Na]*)	4.96-4.81 (m, 2H), 4.23 (dd, J = 12.0, 4.9 Hz, 1H), 3.91 (dd, J = 12.0, 8.8 Hz, 1H), 3.80 (dd, J = 10.8, 1.3 Hz, 1H), 3.50 (dd, J = 10.8, 7.3 Hz, 1H), 1.83-1.73 (m, 1H), 1.65-1.58 (m, 1H), 1.51 (s, 18H), 1.48-1.38 (m, 1H), 1.29 (d, J = 5.9 Hz, 3H), 1.28-1.11 (m, 1H), 1.22-1.11 (m, 2H), 1.09-0.98 (m, 3H), 0.93-0.87 (m, 2H), 0.86-0.81 (m, 6H)	152.64, 83.02, 76.56, 76.20, 74.16, 72.12, 58.02, 44.11, 35.18, 28.23, 27.94, 27.02, 22.68, 22.16, 18.40, 12.86, 8.42, 8.33			
F159	_	Film) 2954, 2932, 2870, 1743, 1706,		¹ H NMR (CDCl ₃) δ 7.10-7.01 (m, 2H), 6.84-6.76 (m, 2H), 5.18 (dd, J = 8.5, 5.8 Hz, 1H), 5.04-4.94 (m, 1H), 4.23 (dd, J = 11.9, 5.9 Hz, 1H), 4.13 (t, J = 8.9 Hz, 1H), 3.95 (dd, J = 11.9, 8.5 Hz, 1H), 3.74 (dd, J = 11.0, 1.5 Hz, 1H), 3.58 (dd, J = 11.0, 6.8 Hz, 1H), 2.28 (s, 3H), 1.91-1.78 (m, 1H), 1.56-1.45 (m, 20H), 1.34 (d, J = 6.4 Hz, 3H), 1.22-1.04 (m, 3H), 0.77 (d, J = 6.6 Hz, 3H), 0.73 (d, J = 6.6 Hz, 3H)				
F160	_	_	_	¹ H NMR (CDCl ₃) & 5.15 (dd, J = 8.5, 5.7 Hz, 1H), 4.87-4.78 (m, 1H), 4.18 (dd, J = 11.9, 5.7 Hz, 1H), 3.89 (dd, J = 11.9, 8.5 Hz, 1H), 3.71-3.63 (m, 1H), 3.55-3.38 (m, 3H), 3.03 (t, J = 9.0 Hz, 1H), 1.67-1.52 (m, 5H), 1.50 (s, 18H), 1.43 (d, J = 6.4 Hz, 3H), 1.36-1.04 (m, 3H), 0.93 (t, J = 7.4 Hz, 3H), 0.88 (d, J = 3.1 Hz,	¹³ C NMR (CDCl ₃) δ 169.74, 152.65, 84.57, 82.95, 75.51, 73.54, 71.61, 57.81, 45.23, 35.94, 28.37, 27.93, 26.70, 23.43, 22.76, 22.38, 18.97, 10.69			
F161	_	_	ESIMS m/z 551 ([M + Na] ⁺)	3H), 0.87 (d, J = 3.1 Hz, 3H) ¹ H NMR (CDCl ₃) δ 5.04 (t, J = 7.4 Hz, 1H), 4.86-4.75 (m, 1H), 4.14 (dd, J = 11.8, 7.1 Hz, 1H), 4.00-3.92 (m, 2H),	¹³ C NMR (CDCl ₃) δ 169.95, 152.63, 83.27, 82.94, 82.87, 76.01, 75.71, 71.67, 57.88,			

	Analytical Data							
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR			
				3.62-3.50 (m, 2H), 3.18 (t, J = 8.1 Hz, 1H), 1.77-1.59 (m, 7H), 1.56-1.46 (m, 22H), 1.43 (d, J = 6.5 Hz, 3H), 1.36-1.22 (m, 1H),	45.58, 36.81, 32.61, 32.52, 28.41, 27.92, 26.45, 23.08, 23.05, 22.73, 22.47, 19.05			
F162	_	_	ESIMS m/z 512 ([M + Na] ⁺)	1.19-1.05 (m, 2H), 0.90-0.80 (m, 6H) 1 H NMR (CDCl ₃) δ 6.85-6.73 (m, 2H), 5.16 (d, J = 8.3 Hz, 1H), 5.02-4.89 (m, 1H), 4.63-4.52 (m, 1H), 4.00-3.87 (m, 1H), 3.50-3.22 (m, 5H), 3.13-2.97 (m, 2H),	¹⁹ F NMR (CDCl ₃) δ -134.8 (dd, J = 20.9, 9.2 Hz), -163.9164.2 (m)			
E1 62			ESIMS	2.37-2.21 (m, 1H), 1.93-1.74 (m, 2H), 1.51-1.45 (d, J = 6.3 Hz, 3H), 1.45-1.37 (s, 9H), 1.00-0.89 (m, 6H)	13 C NMR (CDCl ₃) δ			
F163	_	_	ESIMS m/z 641 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) δ 7.34 (d, J = 1.7 Hz, 1H), 7.19-7.13 (m, 2H), 5.17 (dd, J = 8.6, 6.2 Hz, 1H), 5.02-4.92 (m, 2H), 4.13 (dd, J = 11.8, 6.2 Hz, 1H), 3.90 (dd, J = 11.8, 8.7 Hz, 1H), 3.5-3.44 (m, 2H), 2.78 (dd, J = 13.8, 3.6 Hz, 1H), 2.59 (h, J = 7.0 Hz, 1H), 2.16 (bs, 1H), 1.49 (s, 18H), 1.33 (d, J = 5.9 Hz, 3H), 1.22-1.20 (m, 6H)	To NMK (DDC) 6 176.32, 169.77, 152.61, 135.36, 134.93, 132.83, 132.45, 129.41, 126.99, 83.12, 77.23, 73.78, 71.17, 57.40, 43.77, 34.22, 32.23, 27.91, 19.03, 18.94, 18.30			
F164	_	_	ESIMS m/z 628 ([M + Na] ⁺)	¹ H NMR (CDCl ₃) δ 7.35 (d, J = 2.1 Hz, 1H), 7.23-7.15 (m, 2H), 5.11 (dd, J = 8.4, 6.6 Hz, 1H), 4.89 (dd, J = 8.8, 6.4 Hz, 1H), 4.07 (dd, J = 11.8, 6.5 Hz, 1H), 3.87 (dd, J = 11.8, 8.5 Hz, 1H), 3.46-3.28 (m, 3H), 3.19-3.11 (m, 2H), 2.54 (t, J = 12.9 Hz, 1H), 2.05 (bs, 1H), 1.86 (dp, J = 13.2, 6.6 Hz, 1H), 1.52-1.46 (m, 4H), 1.48 (s, 18H), 0.93 (d, J = 6.7 Hz,				
F165	_	_	ESIMS m/z 641 ([M + Na] ⁺)	6H) ¹H NMR (CDCl ₃) δ 7.35 (d, J = 2.1 Hz, 1H), 7.25-7.06 (m, 2H), 5.11 (dd, J = 8.3, 6.6 Hz, 1H), 4.88 (dd, J = 8.9, 6.4 Hz, 1H), 4.07 (dd, J = 11.8, 6.6 Hz, 1H), 3.87 (dd, J = 11.8, 8.5 Hz, 1H), 3.70-3.59 (m, 1H), 3.55-3.49 (m, 1H), 3.46-3.27 (m, 2H), 3.24-3.08 (m, 2H), 2.55 (t, J = 12.8 Hz, 1H), 2.08-1.98 (m, 1H), 1.65-1.29 (m, 9H), 1.48 (s, 18H), 0.89 (t, J = 7.0 Hz, 3H)				
F166	_	_	ESIMS m/z 539 ([M – t-BOC]*)	0.89 (t, J = 7.0 Hz, 3H) ¹ H NMR (CDCl ₃) 8 7.31 (d, J = 1.8 Hz, 1H), 7.17-7.11 (m, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.16 (dd, J = 8.3, 6.9 Hz, 1H), 5.05 (dq, J = 8.5, 6.4 Hz, 1H), 4.27 (t, J = 8.6 Hz, 1H), 4.13 (dd, J = 11.8, 6.8 Hz, 1H), 3.93 (dd, J = 11.8, 8.5 Hz, 1H), 3.58-3.43 (m, 2H), 3.04 (dd, J = 13.7, 3.5 Hz, 1H), 2.52 (t, J = 12.7 Hz, 1H), 2.32-2.19 (m, 1H), 2.28 (s, 3H), 1.49 (s,				
F167	_	_	ESIMS m/z 565 ([M + Na]*)	18H), 1.39 (d, J = 6.4 Hz, 3H) ¹ H NMR (CDCl ₃) δ 5.20 (dd, J = 8.6, 5.7 Hz, 1H), 4.96-4.89 (m, 1H), 4.79 (t, J = 9.0 Hz, 1H), 4.23 (dd, J = 11.9, 5.7 Hz, 1H), 3.93 (dd, J = 11.9, 8.7 Hz, 1H), 3.75 (d, J = 10.7 Hz,				

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm^{-1})	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F168	_	_	ESIMS m/z 551 ([M + Na]*)	1H), 3.56 (dd, J = 10.9, 7.1 Hz, 1H), 2.56 (h, J = 7.0 Hz, 1H), 1.91-1.42 (m, 8H), 1.51 (s, 18H), 1.29 (d, J = 6.3 Hz, 3H), 1.19 (d, J = 7.0 Hz, 6H), 1.13-0.93 (m, 4H) 1H NMR (CDCl ₃) & 5.11 (dd, J = 8.3, 6.5 Hz, 1H), 4.89-4.78 (m, 1H), 4.18 (dd, J = 11.8, 6.4 Hz, 1H), 3.91 (dd, J = 11.8, 8.4 Hz, 1H), 3.62 (d, J = 10.7 Hz, 1H), 3.51 (dd, J = 10.9, 6.3 Hz, 1H), 3.31 (dd, J = 8.3, 6.5 Hz, 1H), 3.21 (dd, J = 8.3, 6.6 Hz, 1H), 2.97 (t, J = 8.7 Hz, 1H), 2.88 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 1.97-1.45 (m, 6H), 1.50 (s, 18H), 1.42 (d, J = 6.4 Hz, 3H), 1.32-1.22 (m, 1H), 1.15-1.00 (m, 2H), 0.91 (dd, J = 6.7, 4.2 Hz, 6H)	_
F169	_	_	ESIMS m/z 565 ([M + Na] ⁺)	_ ′ ′	_
F170	_	_	([M + Na]) ESIMS m/z 473 ([M + Na] +)	¹ H NMR (CDCl ₃) & 7.07 (m, 4H), 5.14 (d, J = 8.2 Hz, 1H), 4.95 (dq, J = 9.2, 6.4 Hz, 1H), 4.59 (q, J = 7.3 Hz, 1H), 3.87 (dd, J = 11.5, 7.3 Hz, 1H), 3.44 (t, J = 7.4 Hz, 2H), 3.31 (dddd, J = 24.1, 18.8, 10.5, 6.8 Hz, 3H), 3.10 (dd, J = 10.4, 6.6 Hz, 2H), 2.31 (s, 3H), 2.24 (t, J = 12.7 Hz, 1H), 1.87 (dt, J = 13.2, 6.6 Hz, 2H), 1.47 (d, J = 6.4 Hz, 3H), 1.41 (s, 9H),	13C NMR (CDCl ₃) 8 172.24, 154.95, 136.81, 135.52, 129.10, 129.01, 84.66, 80.02, 79.21, 75.57, 72.86, 72.48, 52.97, 47.40, 34.56, 29.17, 28.27, 21.01, 19.48, 18.80
F171	_	_	ESIMS m/z 362	0.95 (d, J = 6.7 Hz, 6H)	_
F172	_	_	([M + H] ⁺) ESIMS m/z 404	_	_
F173	_	_	([M + H] ⁺) ESIMS m/z 364	_	_
F174	_	_	([M + H] ⁺) ESIMS m/z 350	_	_
F175	_	_	([M + H] ⁺) ESIMS m/z 400	_	_
F176	_	_	([M + H] ⁺) ESIMS m/z 440	_	_
F177	_	_	([M + H] ⁺) ESIMS m/z 401	_	_
F178	_	_	([M + H] ⁺) ESIMS m/z 420 ([M + H] ⁺)	_	_
F179	_	_	ESIMS m/z 398	_	_
F180	_	_	([M + H] ⁺) ESIMS m/z 404	_	_
F181	_	_	([M + H] ⁺) ESIMS m/z 364	_	_
F182	_	_	([M + H] ⁺) ESIMS m/z 364 ([M + H] ⁺)	_	_

	Analytical Data					
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR	
F183	_	_	ESIMS m/z 366 ([M + H] ⁺)	_	_	
F184	_	_	ESIMS m/z 368 ([M + H] ⁺)	_	_	
F185	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₀ H ₂₈ NO ₅ , 362.1962; found, 362.1956		_	
F186	_	_	— IIDMC ECI		_	
F187	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₁₉ H ₂₅ F ₄ NO ₄ , 407.172; found, 407.1726	_	_	
F188	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₀ H ₂₉ FNO ₄ , 366.2075; found, 366.2082		_	
F189	_	_	ESIMS m/z 368 ([M + H]+)	_	_	
F190	_	_	ESIMS m/z 374 ([M + H] ⁺)	_	_	
F191	_	_	ESIMS m/z 354 ([M + H]+)	_	_	
F192	_	_	HRMS-ESI (m/z) [M + H] ⁺ calcd for C ₂₀ H ₂₈ NO ₅ , 362.1962; found, 362.1963	_	_	
F193	_	_	$\begin{array}{l} HRMS\text{-}ESI \\ (m/z) \\ [M]^+ \\ calcd \ for \\ C_{20}H_{28}F_3NO_4, \\ 403.1970; \\ found, \\ 403.1973 \end{array}$	_	_	
F194	_	_	_	_		
F195	_	_	ESIMS m/z 362 ([M + H] ⁺)	_	_	
F196	_	_	_	_		
F197	_		ESIMS m/z 404 ([M + H] ⁺)	_	_	
F198	_	_	ESIMS m/z 416 ([M + H]+)	_	_	
F199	_	_	ESIMS m/z 390 ([M + H] ⁺)	_	_	
F200	_	_	ESIMS m/z 418 ([M + H] ⁺)	_	_	

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
F201	_	_	ESIMS m/z 418 ([M + H]+)	_	_
F202	_	_	ESIMS m/z 328 ([M + H]+)	_	_
F203	_	_	ESIMS m/z 340 ([M + H] ⁺)	_	_
F204	_	_	ESIMS m/z 316 ([M + H] ⁺)	_	_
F205	_	_	HRMS-ESI (m/z) [M] ⁺ caled for C ₁₇ H ₃₀ F ₃ NO ₄ , 369.2127; found, 369.2126		
F206	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₁₇ H ₂₉ NO ₅ , 327.2046; found, 327.2053		
F207	_	_	HRMS-ESI (m/z) [M] ⁺ calcd for C ₂₀ H ₃₁ NO ₄ , 349.2253; found, 349.2240		
F208	_	_	ESIMS m/z 302 ([M + H] ⁺)	_	_
F209	_	_	ESIMS m/z 328 ([M + H]+)	_	_
F210	_	_	HRMS-ESI (m/z) [M] ⁺ caled for C ₁₉ H ₂₆ F ₃ NO ₄ , 389.1814; found, 389.1831		_
F211	_	_	ESIMS m/z 419 ([M + H] ⁺)	¹ H NMR (DMSO-d ₆) δ 8.51 (bs, 3H), 7.61 (d, J = 2.1 Hz, 1H), 7.40 (dd, J = 8.3, 2.1 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 5.08-5.00 (m, 1H), 4.89 (t, J = 9.4 Hz, 1H), 4.47-4.44 (m, 1H), 3.65-3.45 (m, 3H), 2.71 (dd, J = 13.8, 3.7 Hz, 1H), 2.64 (p, J = 7.0 Hz, 1H), 2.38-2.32 (m, 1H), 2.11-2.01 (m, 1H), 1.27 (d, J = 6.3 Hz, 3H), 1.15 (d, J = 7.0 Hz, 6H)	
F212	_	_	ESIMS m/z 404.3 ([M + H] ⁺)	_	_
F213	_	_	ESIMS m/z 418.23 ([M + H] ⁺)	_	_
F214	_	_	ESIMS m/z 438.2 ([M + H] ⁺)	_	_
F215	_	_	HRMS-ESI (m/z)	_	_

				Analytical Data	
Cmpd No.	MP (° C.)	IR (cm ⁻¹)	Mass	¹H NMR	¹³ C or ¹⁹ F NMR
			[M] ⁺ calcd for C ₁₈ H ₃₁ NO ₅ , 341.2202; found, 341.2201		
F216	_	_	ESIMS m/z 328.4 ([M + H] ⁺)	_	_
F217	_	_	ESIMS m/z 342.4 ([M + H] ⁺)	_	_
F218	81-84		ESIMS m/z 351 ([M + H] ⁺)	¹ H NMR (CDCl ₃) & 7.08 (t, J = 2.7 Hz, 4H), 4.91 (dq, J = 9.2, 6.4 Hz, 1H), 3.84 (dd, J = 11.6, 7.5 Hz, 1H), 3.76 (m, 1H), 3.71 (d, J = 7.7 Hz, 1H), 3.64 (m, 1H), 3.47 (dd, J = 8.3, 6.4 Hz, 1H), 3.41 (dd, J = 10.7, 6.1 Hz, 1H), 3.31 (m, 2H), 3.13 (d, J = 9.0 Hz, 1H), 3.09 (m, 1H), 3.04 (m, 2H), 2.31 (s, 3H), 1.87 (m, 2H), 1.61 (s, 1H), 1.47 (d, J = 6.4 Hz, 3H), 0.95 (dd, J = 6.7, 1.6 Hz, 6H)	

 $^{^{*1}\}mathrm{H}$ NMR were run at 400 MHz unless noted otherwise

TABLE 3

Biological Testing Rating Scale Rating Table for Fungal Pathogens % Control Rating 80-100 A More than 0-Less than 80 B					
% Control	Rating				
80-100 More than 0-Less than 80 Not Tested No activity noticed in this bioassay	A B C D	45			

TABLE 4

	Biological Activity - Disease Control in High and Low Volume Applications										
		PUC	CRT*			SEPTTR*					
Cmpd.	1D	P* Rs		3DC*		1DP*		3DC*			
No.	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*			
F1	С	A	С	A	С	A	С	В			
F2	C	A	С	В	С	\mathbf{A}	C	\mathbf{A}			
F3	C	A	C	A	C	A	C	A			
F4	C	A	C	A	C	\mathbf{A}	C	\mathbf{A}			
F5	C	В	С	В	С	\mathbf{A}	C	В			
F6	C	В	C	D	C	\mathbf{A}	C	В			
F7	C	A	С	В	C	\mathbf{A}	C	В			
F8	C	A	С	В	C	\mathbf{A}	C	В			
F9	C	\mathbf{A}	С	D	C	A	C	A			

 $^{^{\}star}13\mathrm{C}$ NMR were run at 101 MHz unless noted otherwise

 $^{^{*19}\!\}mathrm{F}$ NMR were run at 376 MHz unless noted otherwise

TABLE 4-continued

Property Property		Bio	logical Activ	ity - Disease (Control in Hi	gh and Low V	olume Appli	cations	
No.			PUCO	CRT*			SEPT	TTR*	
FID	Cmpd.	1D			C*	1D:			_*
F11	No.	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*
F12									
F13									
F15									
F16									
F17									
F18									
F190									
F21		С	A	C	A	С	A	C	
F22									
F23									
F24									
F25									
F27	F25						A		A
F28 C A C B C A C B F30 C A C B C A C B F31 C B C D C A C B F31 C B C D C A C B F31 C B C D C A C B F33 C B C A C A C B C A C B C A C B C A C B C A C B C A C B C A C A C B C A C A C A C A C A C A C A C A C A C A C <									
F29 C A C B C A C B F31 C B C D C A C B F31 C B C D C A C B F34 C A C D C A C B F34 C A C D C A C B F35 C A C D C A C A F36 C A C D C A C A F337 C A C B C A C A F389 C A C B C A C A C A F411 C A C A C A C A C A C A C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F30									
F32 C A C B C A C B F33 C B C D C A C B F34 C A C D C A C B F35 C A C D C A C B F36 C A C D C A C A F37 C A C B C A C A F37 C A C									
F33									
F34 C A									
F355 C A C D C A C B F366 C A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F37 C A C B C A C A F38 C A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F38 C A								C	
F39 C A									
F40 C B C D C A C A F41 C A C D C A C A F42 C A C D C A C A F43 C B C D C A C B F44 C A C D C D C D C D C D C D C D C D C D C D C D C D C D C D C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
F41 C A C D C A C A F42 C A C A C A C A F43 C B C A C A C B F44 C A C D C D C D C D C D C D C D C D C D C D C D C D C D C A									
F43 C B C D C A C B F44 C A C D C D C D F45 C A C B C A C A F46 C A C A C A C A F47 C A C A C A C A F47 C A C <									
F44 C A C D C D C D F45 C A C B C A C A F46 C A C A C A C A F47 C A C A C A C A F48 C A C A C A C A F48 C A C A C A C B C A C B C A C B C A C B C A C A <									
F45 C A C B C A C A F46 C A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F46 C A C A C A C A C A C A C A C A C A C A C A C A C A C A C B C A A A									
F47 C A C A C A C A C A C A C A C A C A C B C A C B C A C A									
F49 A A B A									
F50 C A A A B A A A A A B A									
F51 C A C B C A C A F52 C A C B C A C A F53 A A A B A A A B A F54 A A B A									
F52 C A C B C A C A F53 A A B A A A B A F54 A A A B A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F54 A A B A									
F55 C A A									
F56 C A C A C A C A F57 A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F57 A A B A									
F59 A A B A									
F60 A									
F61 A A B A A A B A F62 A A B A A A A A A F63 A A B A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F62 A A B A									
F63 A A B A									
F65 A A B A							A		A
F66 A A B B A A B B F67 C A C A C A C B F68 A </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F67 C A C A C B F68 A A A A A A A A F69 A A A A A A A A A F70 C A C A C A C A C A C A C A C A C A C A C A A C A									
F68 A									
F70 C A C A C A F71 C A C A C A F71 C A A A C A C A F72 A									
F71							A		A
F72 A A A A A A A A A A A A A A A A A A A									
F73 A A B A A A A A A A A A A A A A A A A									
F74									
F75 A A B A A A A A A A A F76 A A A A A A A A A A A A A A A A A A A									
F77 A A A A A A A A A A A A A A A A A A									A
F78 C A C A C A C A F79 A A B A A A A A									
F79 A A B A A A A									
	F80	A	A	A	A	A	A	A	A

TABLE 4-continued

	Bio	logical Activ	ity - Disease (Control in Hi	gh and Low V	olume Applic	cations	
		PUC	CRT*			SEPT	TTR*	
	1D		3D0	D*	1D		3D6	C*
Cmpd.		Ra	ite			Ra	ite	
No.	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*	121.5 g/H*	100 ppm*
F81	С	A	С	A	С	A	С	A
F82	A	Α	A	A	A	A	A	A
F83	A	A	В	A	В	A	A	A
F84	C	A	C	A	С	A	C	D
F85	C	Α	C	В	C	A	C	В
F86	C	A	С	\mathbf{A}	C	A	C	A
F87	A	Α	В	A	A	A	A	A
F88	C	A	С	A	C	A	C	A
F89	C	\mathbf{A}	С	\mathbf{A}	C	\mathbf{A}	C	A
F90	C	A	C	\mathbf{A}	C	A	C	\mathbf{A}
F91	С	A	С	A	C	A	C	A
F92	A	\mathbf{A}	A	\mathbf{A}	\mathbf{A}	\mathbf{A}	A	A
F93	A	\mathbf{A}	A	A	\mathbf{A}	A	A	A
F94	A	A	A	A	A	A	A	A
F95	С	A	С	A	C	A	С	A
F96	A	A	A	A	A	A	A	A
F97	A	A	A	A	A	A	A	В
F98	A	A	В	A	A	A	В	A
F99	A	A	В	A	A	A	A	A
F100	A	A	В	A	A	A	В	A
F101	C	A	C	\mathbf{A}	С	\mathbf{A}	C	A
F102	C	A	C	A	C	\mathbf{A}	C	A
F103	С	\mathbf{A}	С	\mathbf{A}	С	\mathbf{A}	С	В
F104	A	\mathbf{A}	A	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	A
F105	A	\mathbf{A}	A	A	A	\mathbf{A}	A	A
F106	A	A	A	A	A	\mathbf{A}	A	A
F107	A	\mathbf{A}	A	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	A
F108	A	\mathbf{A}	A	A	A	\mathbf{A}	A	A
F109	A	A	A	A	A	\mathbf{A}	A	A
F110	A	A	В	A	A	A	A	A
F111	С	A	С	A	C	A	С	A
F112	A	С	В	С	A	С	A	C
F113	A	C	D	С	D	С	D	C
F114	A	A	A	A	A	A	A	A
F115	A	A	A	A	A	A	A	A
F116	A	A	A	A	A	A	A	A
F117	A	A	A	A	A	A	A	A
F118	A	A	A	A	A	A	A	A
F119	C	A	C	A	C	A	C	A
F120	Ċ	A	Ċ	В	Ċ	A	Ċ	A
F121	Ā	A	Ā	Ā	Ā	A	Ā	A
F122	A	C	В	Ĉ	A	Ċ	D	Ċ
F123	A	Č	Ď	Č	A	č	Ď	Č
- 120			-		**		-	~

^{*}PUCCRT—Wheat Brown Rust (Puccinia triticina)
*SEPTTR—Wheat Leaf Blotch (Septoria tritici)
*IDP—I Day Protectant
*3DC—3 Day Curative

TABLE 5

	Biologic	al Activity -	Disease Contr	ol at 100 ppr	n
Com- pound. Number	ALTESO*	CERCBE*	COLLLA* 1DP*	ERYSCI*	ERYSGH*
F60	С	A	С	A	С
F73	В	A	A	В	С
F80	A	A	A	A	A
F82	В	В	A	В	С
F83	D	A	A	D	A
F96	A	A	A	A	A
F105	В	A	A	В	C
F107	\mathbf{A}	A	C	A	В
F108	A	A	C	A	A
F110	A	A	A	В	С
F114	A	A	A	A	\mathbf{A}
F117	A	A	A	A	A

- 50			TABLE	5-continue	ed	
_		Biologic	al Activity -	Disease Contr	ol at 100 ppi	m
55	Compound.	ALTESO*	CERCBE*	COLLLA* 1DP*	ERYSCI*	ERYSGH*
	F122 F123	A A	A A	A A	В А	A A
60	*CERCBE *COLLLA lagenariun	—Leaf Spot o A—Cucumber 2	Anthracnose (G	Cercospora beti	rium; Anamorj	ph: Colletotricum
65	siphe gran	I—Barley Pow ninis f.sp. hord Day Protectant	ei)	Blumeria gramii	nis f.sp. hordei	; Synonym: Ery-

237

TABLE 6

	Biolog	gical Activity	/ - Disease C	Control at 100	ppm	
Compound. Number	ERYSGT*	LEPTNO*	PYRIOR*	RHYNSE* DP*	UNCINE*	VENTIN*
F60	С	С	С	С	A	С
F73	C	C	A	A	C	С
F80	A	A	A	C	В	В
F82	C	C	A	A	C	С
F83	C	A	A	\mathbf{A}	В	A
F96	\mathbf{A}	\mathbf{A}	\mathbf{A}	C	A	С
F105	C	С	\mathbf{A}	\mathbf{A}	С	С
F107	C	С	A	A	В	С
F108	С	С	\mathbf{A}	\mathbf{A}	A	C
F110	C	С	\mathbf{A}	\mathbf{A}	С	С
F114	С	С	\mathbf{A}	\mathbf{A}	A	\mathbf{A}
F117	\mathbf{A}	A	\mathbf{A}	С	A	\mathbf{A}
F122	С	A	C	\mathbf{A}	\mathbf{A}	\mathbf{A}
F123	С	A	С	A	A	В

*ERYSGT—Wheat Powdery Mildew (Blumeria graminis f. sp. tritici; Synonym: Erysiphe graminis f. sp.

TABLE 7

KPA*	PHA	Compound
3DC*	1DP*	Number
A	A	F106
В	A	F107
A	A	F108
В	A	F109
В	A	F114
D	В	F122
D	В	F123

^{*}PHAKPA—Asian Soybean Rust ($Phakopsora\ pachyrhizi$)

What is claimed is:

1. A method for the control and/or the prevention of ⁵⁰ fungal growth comprising the steps of:

applying a fungicidally effective amount of at least one compound of Formula I

$$X$$
 O
 CH_3
 R_1
 O
 R_1

25

55

60

wherein: X is H or C(O)R₃; Y is H, C(O)R₃, or Q; Q is

 R_1 is chosen from H, alkyl, alkenyl, aryl, —Si(R_6)₃, or —C(O) R_6 , each optionally substituted with 0, 1 or multiple R_5 ;

R₂ is chosen from H, alkyl, aryl, heteroaryl, or arylalkyl, each optionally substituted with 0, 1 or multiple R₅;

R₃ is chosen from alkoxy, or benzyloxy, each optionally substituted with 0, 1, or multiple R₅;

 R_4 is chosen from H, $-C(O)R_7$, or $-CH_2OC(O)R_7$;

R₅ is chosen from H, alkyl, alkenyl, halo, haloalkyl, alkoxy, aryl, heteroaryl, heterocyclyl, or —C(O)R₆;

 R_{δ} is chosen from alkyl, alkenyl, haloalkyl, alkoxy, aryl or heteroaryl; and

 R_7 is chosen from alkyl or alkoxy, each optionally substituted with 0, 1, or multiple R_6 ;

with the proviso that R₂ is not unsubstituted phenyl or unsubstituted cyclohexyl;

to at least one selected from the group consisting of: a fungi, an animal, an inert surface, a plant, an area adjacent to a plant, soil adapted to support growth of a plant, and a seed adapted to produce a plant.

2. The method according to claim 1, wherein X and Y are independently chosen from H or C(O)R₃.

3. The method according to claim 2, wherein R_1 is chosen from H, alkyl, alkenyl, aryl, —Si(R_6)₃, or —C(O) R_6 , each optionally substituted with 0, 1 or multiple R_5 .

tritici)
*LEPTNO—Wheat Glume Blotch (Leptosphaeria nodorum)

^{*}PYRIOR—Rice Blast (Magnaporthe grisea; Anamorph: Pyricularia oryzae)

^{*}RHYNSE—Barley Scald (Rhyncosporium secalis)

^{*}UNCINE—Grape Powdery Mildew (Uncinula necator)

^{*}VENTIN—Apple Scab (Venturia inaequalis)

^{*1}DP-1 Day Protectant

^{*1}DP-1 Day Protectant

^{*3}DC—3 Day Curative

- **4**. The method according to claim **3**, wherein R_2 is chosen from H, alkyl, aryl, heteroaryl, or arylalkyl, each optionally substituted with 0, 1 or multiple R_5 .
- 5. The method according to claim 1, wherein X is H and Y is Q.
- **6**. The method according to claim **5**, wherein R_1 is chosen from H, alkyl, alkenyl, aryl, —Si(R_6)₃, or —C(O) R_6 , each optionally substituted with 0, 1 or multiple R_5 .
- 7. The method according to claim 6, wherein R_2 is chosen from H, alkyl, aryl, heteroaryl, or arylalkyl, each optionally substituted with 0, 1 or multiple R_5 .
- **8.** The method according to claim **7**, wherein R₄ is H, —C(O)R₇, or —CH₂OC(O)R₇.
- 9. The method according to claim 8, wherein R_7 is alkyl or alkoxy, each optionally substituted with 0, 1, or multiple 15 R_5 .
 - 10. The method according to claim 1, wherein:
 - at least one compound of said Formula I is applied in combination with a phytologically acceptable carrier material.
 - 11. The method according to claim 10, wherein: the compound of Formula I is admixed with a phytologically acceptable carrier material.
 - 12. The method according to claim 1, wherein:
 - the compound of Formula I is applied in combination with 25 at least one agriculturally active ingredient selected from the group consisting of: fungicides, insecticides, nematocides, miticides, arthropodicides, bactericides and combinations thereof.
 - 13. The method according to claim 12, wherein: the compound of Formula I is admixed with at least one agriculturally active ingredient selected from the group consisting of: fungicides, insecticides, nematocides,

consisting of: fungicides, insecticides, nematocides, miticides, arthropodicides, bactericides and combinations thereof.

14. The method according to claim 1, wherein the compound of Formula I is suitable for the control of at least one fungal pathogen selected from the group consisting of: *Mycosphaerella graminicola*; anamorph: *Septoria tritici*, *Puccinia triticina*, *Puccinia striiformis*, *Venturia inaequalis*, *Ustilago maydis*, *Uncinula necator*, *Rhynchosporium secalis*, *Magnaporthe grisea*, *Pseudoperonospora cubensis*,

Phakopsora pachyrhizi, Leptosphaeria nodorum, Blumeria graminis f. sp. tritici, Blumeria graminis f. sp. hordei, Erysiphe cichoracearum, Glomerella lagenarium, Cercospora beticola, Alternaria solani, and Pyrenophora teres.

15. The method according to claim 1, wherein the compound of Formula I is suitable for the control of a fungal pathogen comprising *Septoria tritici*, *Puccinia triticina*, and *Phakopsora pachyrhizi*.

- 16. The method according to claim 12, wherein the compound of Formula I is suitable for the control of at least one fungal pathogen selected from the group consisting of Mycosphaerella graminicola; anamorph: Septoria tritici, Puccinia triticina, Puccinia striiformis, Venturia inaequalis, Ustilago maydis, Uncinula necator, Rhynchosporium secalis, Magnaporthe grisea, Pseudoperonospora cubensis, Phakopsora pachyrhizi, Leptosphaeria nodorum, Blumeria graminis f. sp. tritici, Blumeria graminis f. sp. hordei, Erysiphe cichoracearum, Glomerella lagenarium, Cercospora beticola, Alternaria solani, and Pyrenophora teres.
- 17. The method according to claim 13, wherein the compound of Formula I is suitable for the control of at least one fungal pathogen selected from the group consisting of Mycosphaerella graminicola; anamorph: Septoria tritici, Puccinia triticina, Puccinia striiformis, Venturia inaequalis, Ustilago maydis, Uncinula necator, Rhynchosporium secalis, Magnaporthe grisea, Pseudoperonospora cubensis, Phakopsora pachyrhizi, Leptosphaeria nodorum, Blumeria graminis f. sp. tritici, Blumeria graminis f. sp. hordei, Erysiphe cichoracearum, Glomerella lagenarium, Cersopora beticola, Alternaria solani, and Pyrenophora teres.
 - 18. The method according to claim 12, wherein the compound of Formula I is suitable for the control of a fungal pathogen comprising *Septoria tritici*, *Puccinia triticina*, and *Phakopsora pachyrhizi*.
 - 19. The method according to claim 13, wherein the compound of Formula I is suitable for the control of a fungal pathogen comprising *Septoria tritici*, *Puccinia triticina*, and *Phakopsora pachyrhizi*.
 - 20. The method according to claim 1, wherein the compound of Formula I is applied to a root of the plant or foliage of the plant.

* * * * *